run_text_generation_server.py 2.83 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Ryan Prenger's avatar
Ryan Prenger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

"""Sample Generate GPT"""
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))
import socket
from megatron import get_args
from megatron import print_rank_0
from megatron import mpu
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.model import GPTModel
from megatron.training import get_model
from megatron.text_generation_server import MegatronServer
17
from megatron.text_generation import generate_and_post_process
rprenger's avatar
rprenger committed
18
from megatron.text_generation import beam_search_and_post_process
Ryan Prenger's avatar
Ryan Prenger committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch

def model_provider(pre_process=True, post_process=True):
    """Build the model."""

    print_rank_0('building GPT model ...')
    model = GPTModel(num_tokentypes=0, parallel_output=False, pre_process=pre_process, post_process=post_process)

    return model

def add_text_generate_args(parser):
    group = parser.add_argument_group(title='text generation')

    group.add_argument("--temperature", type=float, default=1.0,
                       help='Sampling temperature.')
    group.add_argument("--top_p", type=float, default=0.0,
                       help='Top p sampling.')
    group.add_argument("--top_k", type=int, default=0,
                       help='Top k sampling.')
    group.add_argument("--out-seq-length", type=int, default=1024,
                       help='Size of the output generated text.')
    return parser


if __name__ == "__main__":
    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
                                       'no_load_rng': True,
                                       'no_load_optim': True})

    args = get_args()
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()
    # Set up model and load checkpoint
54
    model = get_model(model_provider, wrap_with_ddp=False)
Ryan Prenger's avatar
Ryan Prenger committed
55
56
57
58
59
60
61
62
63
64
65
66

    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
        server = MegatronServer(model)
        server.run("0.0.0.0")

    while True:
        choice = torch.cuda.LongTensor(1)
67
        torch.distributed.broadcast(choice, 0)
Ryan Prenger's avatar
Ryan Prenger committed
68
        if choice[0].item() == 0:
69
70
71
72
            try:
                generate_and_post_process(model)
            except ValueError as ve:
                pass
rprenger's avatar
rprenger committed
73
74
75
76
77
        elif choice[0].item() == 1:
            try:
                beam_search_and_post_process(model)
            except ValueError as ve:
                pass