cleanup_fix_dataset.py 6.51 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4
5

"""
Filter and clean documents:
Capable to clean docs with less than 512 characters, less than
Mostofa Patwary's avatar
Mostofa Patwary committed
6
7
8
256 characters and contains javascript, fix text and dataset specific
cleaning like stories and realnews datasets.
Program arguments have the details.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""

import argparse
from functools import partial
import glob
import ftfy
import json
from langdetect import detect
import multiprocessing
import os
from pathlib import Path
import re
import time

def process_doc(json_line, args):

    # Read the line.
    document = json.loads(json_line)
    text = document['text']

    output = {'remove_512': False, 'remove_256_javascript': False, \
        'remove_512_non_english': False, 'ftfy_fix_text': False, \
        'general_cleaning': False}

    try:
        # Reomove all docs with less than 512 characters
        if "remove_512" in args.tasks:
            if len(text) < 512:
                output['remove_512'] = True
                return output, text, document, True

        # Remove docs if less than 256 character length and contains Javascript
        if "remove_256_javascript" in args.tasks:
            if len(text) < 256 and 'javascript' in text.lower():
                output['remove_256_javascript'] = True
                return output, text, document, True

        # Remove docs < 512 and nonenglish
        if "remove_512_non_english" in args.tasks:
            if len(text) < 512 and detect(text) != 'en':
                output['remove_512_non_english'] = True
                return output, text, document, True

        # Fix the text using ftfy, don't remove the text, hence return False
        if "ftfy_fix_text" in args.tasks:
            fixed_text = ftfy.fix_text(text)
            output['ftfy_fix_text'] = True
            return output, fixed_text, document, False

        # Cleaning extra spaces and newlines
        if "general_cleaning" in args.tasks:
            cleaned_text = re.sub(r"  +|\b\n+ |\b\n+", " ", text)
Mostofa Patwary's avatar
Mostofa Patwary committed
61
62
63
64
65
66
67
68
69
70
71
72
            #cleaned_text = re.sub(r"\n\n+", "\n\n", text) # used this for Gutenberg dataset
            #cleaned_text = re.sub(r"\n", "\n\n", text) # Used this for realnews

            # stories datasets
            #cleaned_text = re.sub(r" \'", "'", text)
            #cleaned_text = re.sub(r" \!", "!", cleaned_text)
            #cleaned_text = re.sub(r" \.", ".", cleaned_text)
            #cleaned_text = re.sub(r" \?", "?", cleaned_text)
            #cleaned_text = re.sub(r" - ", "-", cleaned_text)
            ##cleaned_text = re.sub(r"\" ", "\"", cleaned_text)
            #cleaned_text = re.sub(r" @ ", "@", cleaned_text)

73
74
75
76
77
78
            output['general_cleaning'] = True
            return output, cleaned_text, document, False

    except Exception as e:
        print('Error: *************************\n{}\ntext: {}'.format(e, \
            text), flush=True)
Mostofa Patwary's avatar
Mostofa Patwary committed
79
        return output, text, document, True
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    # don't remove
    return output, text, document, False


def process_set(args, input_file, output_f_cleaned, output_f_filtered):

    print(' > working on {} ...'.format(input_file), flush=True)
    
    num_docs = num_remove_512 = num_remove_java = num_remove_512_non_english \
        = num_ftfy_fix_text = num_general_cleaning = 0

    # Output file and counters.
    output_cleaned = open(output_f_cleaned, 'wb')
    output_filtered = open(output_f_filtered, 'wb')

    start_time = time.time()

    # Setup multi-processing.
    num_workers = 40
    fin = open(input_file, 'r', encoding='utf-8')
    pool = multiprocessing.Pool(num_workers)
    process_doc_partial = partial(process_doc, args=args)
    processed_docs = pool.imap(process_doc_partial, fin, 500)

    # Process documents.
    for output, text, document, to_filter in processed_docs:
        num_docs += 1

        num_remove_512 += 1 if output['remove_512'] else 0
        num_remove_java += 1 if output['remove_256_javascript'] else 0
        num_remove_512_non_english += 1 if output['remove_512_non_english'] \
            else 0
        num_ftfy_fix_text += 1 if output['ftfy_fix_text'] else 0
Mostofa Patwary's avatar
Mostofa Patwary committed
114
        num_general_cleaning += 1 if output['general_cleaning'] else 0
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

        document['text'] = text
        myjson = json.dumps(document, ensure_ascii=False)

        if to_filter:
            output_filtered.write(myjson.encode('utf-8'))
            output_filtered.write('\n'.encode('utf-8'))
        else:
            output_cleaned.write(myjson.encode('utf-8'))
            output_cleaned.write('\n'.encode('utf-8'))

        if num_docs % args.log_interval == 0:
            print('    processed {:9d} documents in {:.2f} seconds ...'.format(
                num_docs, time.time() - start_time), flush=True)

    # Close the file.
    output_cleaned.close()
    output_filtered.close()
    fin.close()

    # Print stats.
    print('  >> total docs: {} remove_512 {} remove_256_javascript {} '\
        'remove_512_non_english {} ftfy_fix_text {} general_cleaning {}'.\
        format(num_docs, num_remove_512, num_remove_java,\
        num_remove_512_non_english, num_ftfy_fix_text, \
        num_general_cleaning), flush=True)

if __name__ == '__main__':


    print('parsing the arguments ...')

    parser = argparse.ArgumentParser()
    parser.add_argument('--input-files', nargs = '*', required=True, default=\
                        None, help = 'Input json files that needs to be'\
Mostofa Patwary's avatar
Mostofa Patwary committed
150
                        ' cleaned')
151
    parser.add_argument('--tasks', nargs = '*', required=True, default=None,\
Mostofa Patwary's avatar
Mostofa Patwary committed
152
153
154
155
156
157
                        help = 'Tasks to perform on the input files, ' \
                        'such as remove_512, remove_256_javascript, ' \
                        'remove_512_non_english, ftfy_fix_text, and ' \
                        'general_cleaning. 256 or 512 means the number' \
                        ' of characters.')

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    parser.add_argument('--output-path', type=str, default=None,
                       help='Directory where the output should go')
    parser.add_argument('--log-interval', type=int, default=100,
                       help='Log interval')

    args = parser.parse_args()

    print('cleanup dataset ...')

    for input_file in args.input_files:
        input_filename, input_filename_ext = os.path.splitext(Path(input_file)\
            .name)

        output_f_cleaned = os.path.join(args.output_path, input_filename + \
            "_cleaned" + input_filename_ext)
        output_f_filtered = os.path.join(args.output_path, input_filename + \
            "_filtered" + input_filename_ext)

        process_set(args, input_file, output_f_cleaned, output_f_filtered)

    print('done :-)', flush=True)