finetune.py 2.53 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""GLUE finetuning/evaluation."""

Neel Kant's avatar
Neel Kant committed
5
6
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
7
from megatron import get_tokenizer
8
from megatron import mpu
Jared Casper's avatar
Jared Casper committed
9
from megatron.model.classification import Classification
10
11
12
13
from tasks.eval_utils import accuracy_func_provider
from tasks.finetune_utils import finetune


Mohammad's avatar
Mohammad committed
14
def glue_classification(num_classes, Dataset,
15
16
                        name_from_datapath_func):

Mohammad's avatar
Mohammad committed
17
    def train_valid_datasets_provider():
18
        """Build train and validation dataset."""
Mohammad's avatar
Mohammad committed
19
20
21
        args = get_args()
        tokenizer = get_tokenizer()

22
        train_dataset = Dataset('training', args.train_data,
Mohammad's avatar
Mohammad committed
23
                                tokenizer, args.seq_length)
24
        valid_dataset = Dataset('validation', args.valid_data,
Mohammad's avatar
Mohammad committed
25
26
                                tokenizer, args.seq_length)

27
28
        return train_dataset, valid_dataset

Jared Casper's avatar
Jared Casper committed
29
    def model_provider(pre_process=True, post_process=True):
30
        """Build the model."""
Mohammad's avatar
Mohammad committed
31
32
        args = get_args()

33
34
        print_rank_0('building classification model for {} ...'.format(
            args.task))
Jared Casper's avatar
Jared Casper committed
35
36
        model = Classification(num_classes=num_classes, num_tokentypes=2,
                               pre_process=pre_process, post_process=post_process)
Mohammad's avatar
Mohammad committed
37

38
        return model
39

Mohammad's avatar
Mohammad committed
40
    def metrics_func_provider():
41
        """Privde metrics callback function."""
Mohammad's avatar
Mohammad committed
42
43
44
45
        def single_dataset_provider(datapath):
            args = get_args()
            tokenizer = get_tokenizer()

46
            name = name_from_datapath_func(datapath)
Mohammad's avatar
Mohammad committed
47
48
            return Dataset(name, [datapath], tokenizer, args.seq_length)
        return accuracy_func_provider(single_dataset_provider)
49
50

    """Finetune/evaluate."""
Mohammad's avatar
Mohammad committed
51
    finetune(train_valid_datasets_provider, model_provider,
52
53
54
             end_of_epoch_callback_provider=metrics_func_provider)


Mohammad's avatar
Mohammad committed
55
56
def main():
    args = get_args()
57
58
59
60

    if args.task == 'MNLI':

        num_classes = 3
Mohammad's avatar
Mohammad committed
61
        from tasks.glue.mnli import MNLIDataset as Dataset
Neel Kant's avatar
Neel Kant committed
62

63
64
65
66
67
68
69
        def name_from_datapath(datapath):
            return datapath.split('MNLI')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    elif args.task == 'QQP':

        num_classes = 2
Mohammad's avatar
Mohammad committed
70
        from tasks.glue.qqp import QQPDataset as Dataset
Neel Kant's avatar
Neel Kant committed
71

72
73
74
75
76
77
78
79
        def name_from_datapath(datapath):
            return datapath.split('QQP')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    else:
        raise NotImplementedError('GLUE task {} is not implemented.'.format(
            args.task))

Mohammad's avatar
Mohammad committed
80
    glue_classification(num_classes, Dataset, name_from_datapath)