pretrain_t5.py 5.23 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15

"""Pretrain T5"""

from functools import partial

import torch

from megatron import (
    get_args,
    get_timers,
    mpu,
    print_rank_0
)
from megatron.data.dataset_utils import build_train_valid_test_datasets
16
from megatron.model import T5Model, ModelType
17
18
19
20
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group


21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Pipeline parallelism for T5
===========================

T5 is a model architecture with both encoder and decoder blocks.
Consequently, pipeline parallelism is implemented slightly differently
compared to architectures like GPT and BERT.

In particular, when pipeline_model_parallel_world_size > 1, each stage
either executes an encoder block or a decoder block. The
--pipeline-model-parallel-split-rank argument controls the rank at which
the split happens: all ranks lower than this argument execute the
encoder block, and all ranks equal to or higher than this argument value
execute the decoder block.

In the encoder section of the model, only one tensor is sent downstream:
the intermediate encoder_hidden_state. In the decoder section of the
model, two tensors are sent downstream in the forward pass: the fully
computed encoder_hidden_state, and the intermediate decoder_hidden_state.

In particular, these are the shapes of the tensors sent between
different workers:
    If rank is in decoder section:
        intermediate decoder_hidden_state (pre-transpose),
        complete encoder_hidden_state (post-transpose).
    If rank is at boundary between encoder and decoder sections:
        complete encoder_hidden_state (post-transpose).
    If rank is in encoder section:
        intermediate encoder_hidden_state (pre-transpose).

Additionally, we have code in the backward_step function in schedules.py
to accumulate the encoder_hidden_state gradient across skip connections
(encoder_hidden_state fed in as input to each layer in the decoder).
"""


57
58
def model_provider(pre_process=True, post_process=True,
                   add_encoder=True, add_decoder=True):
59
60
61
62
    """Build the model."""

    print_rank_0('building T5 model ...')
    model = T5Model(num_tokentypes=0,
63
64
65
66
67
                    parallel_output=True,
                    pre_process=pre_process,
                    post_process=post_process,
                    add_encoder=add_encoder,
                    add_decoder=add_decoder)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    return model


def get_batch(data_iterator):
    """Build the batch."""

    keys = ['text_enc', 'text_dec', 'labels', 'loss_mask',
            'enc_mask', 'dec_mask', 'enc_dec_mask']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_enc = data_b['text_enc'].long()
    tokens_dec = data_b['text_dec'].long()
    labels = data_b['labels'].long()
    loss_mask = data_b['loss_mask'].float()

    enc_mask = (data_b['enc_mask'] < 0.5)
    dec_mask = (data_b['dec_mask'] < 0.5)
    enc_dec_mask = (data_b['enc_dec_mask'] < 0.5)

    return tokens_enc, tokens_dec, loss_mask, labels, \
           enc_mask, dec_mask, enc_dec_mask


def loss_func(loss_mask, output_tensor):
100
    lm_loss_ = output_tensor.float()
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    lm_loss = torch.sum(
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()

    loss = lm_loss
    averaged_losses = average_losses_across_data_parallel_group([lm_loss])

    return loss, {'lm loss': averaged_losses[0]}


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
116
    timers('batch generator', log_level=2).start()
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask \
        = get_batch(data_iterator)
    timers('batch generator').stop()

    # Forward model lm_labels
    output_tensor = model(tokens_enc,
                          tokens_dec,
                          enc_mask,
                          dec_mask,
                          enc_dec_mask,
                          tokentype_ids=None,
                          lm_labels=lm_labels)

    return output_tensor, partial(loss_func, loss_mask)


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    print_rank_0('> building train, validation, and test datasets '
                 'for T5 ...')
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.encoder_seq_length,
        max_seq_length_dec=args.decoder_seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup),
        dataset_type='t5')
    print_rank_0("> finished creating T5 datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

158
159
    pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_and_decoder,
             forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})