pretrain_gpt.py 3.33 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
2

3
"""Pretrain GPT"""
4
5

import torch
6
from functools import partial
Neel Kant's avatar
Neel Kant committed
7
8
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
9
from megatron import get_timers
Mohammad's avatar
Mohammad committed
10
from megatron import get_tokenizer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
11
from megatron import mpu
12
from megatron.data.gpt_dataset import build_train_valid_test_datasets
13
from megatron.model import GPTModel, ModelType
Mohammad's avatar
Mohammad committed
14
from megatron.training import pretrain
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
15
from megatron.utils import get_ltor_masks_and_position_ids
16
from megatron.utils import average_losses_across_data_parallel_group
Mohammad's avatar
Mohammad committed
17

18
def model_provider(pre_process=True, post_process=True):
19
20
    """Build the model."""

21
    print_rank_0('building GPT model ...')
22
23
24
25
26
27
    model = GPTModel(
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
28
29
30
    return model


Mohammad's avatar
Mohammad committed
31
def get_batch(data_iterator):
32
    """Generate a batch"""
Mohammad's avatar
Mohammad committed
33
    args = get_args()
Mohammad's avatar
Mohammad committed
34
    tokenizer = get_tokenizer()
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
53
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
54
        tokens,
Mohammad's avatar
Mohammad committed
55
        tokenizer.eod,
56
        args.reset_position_ids,
57
        args.reset_attention_mask,
58
        args.eod_mask_loss)
59
60
61

    return tokens, labels, loss_mask, attention_mask, position_ids

62
63
64
65
def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
66

67
68
69
70
71
72
73
    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model):
74
    """Forward step."""
75
    args = get_args()
Mohammad's avatar
Mohammad committed
76
    timers = get_timers()
77
78

    # Get the batch.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
79
    timers('batch-generator', log_level=2).start()
80
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
Mohammad's avatar
Mohammad committed
81
        data_iterator)
mohammad's avatar
mohammad committed
82
    timers('batch-generator').stop()
83

84
85
    output_tensor = model(tokens, position_ids, attention_mask,
                          labels=labels)
86

87
    return output_tensor, partial(loss_func, loss_mask)
88
89


90
91
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
Mohammad's avatar
Mohammad committed
92
    args = get_args()
Mohammad's avatar
Mohammad committed
93

94
    print_rank_0('> building train, validation, and test datasets '
95
                 'for GPT ...')
96
97
98
99
100
101
102
103
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        seq_length=args.seq_length,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
104
    print_rank_0("> finished creating GPT datasets ...")
105

106
    return train_ds, valid_ds, test_ds
107
108
109


if __name__ == "__main__":
110

111
112
113
    pretrain(train_valid_test_datasets_provider, model_provider,
             ModelType.encoder_or_decoder,
             forward_step, args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})