tokenizer.py 13.2 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Megatron tokenizers."""
4
5
6
7
8

from abc import ABC
from abc import abstractmethod

from .bert_tokenization import FullTokenizer as FullBertTokenizer
Mohammad's avatar
Mohammad committed
9
from .gpt2_tokenization import GPT2Tokenizer
10
11


Mohammad's avatar
Mohammad committed
12
def build_tokenizer(args):
Mohammad's avatar
Mohammad committed
13
14
    """Initialize tokenizer."""
    if args.rank == 0:
Mohammad's avatar
Mohammad committed
15
        print('> building {} tokenizer ...'.format(args.tokenizer_type),
Mohammad's avatar
Mohammad committed
16
              flush=True)
17
18

    # Select and instantiate the tokenizer.
Mohammad's avatar
Mohammad committed
19
    assert args.vocab_file is not None
Mohammad's avatar
Mohammad committed
20
21
    if args.tokenizer_type == 'BertWordPieceLowerCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
22
23
                                            lower_case=True,
                                            vocab_extra_ids=args.vocab_extra_ids)
Raul Puri's avatar
Raul Puri committed
24
25
    elif args.tokenizer_type == 'BertWordPieceCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
26
27
                                            lower_case=False,
                                            vocab_extra_ids=args.vocab_extra_ids)
Mohammad's avatar
Mohammad committed
28
29
30
    elif args.tokenizer_type == 'GPT2BPETokenizer':
        assert args.merge_file is not None
        tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
31
32
33
    elif args.tokenizer_type == 'SentencePieceTokenizer':
        assert args.tokenizer_model is not None
        tokenizer = _SentencePieceTokenizer(args.tokenizer_model, vocab_extra_ids=args.vocab_extra_ids)
34
35
    else:
        raise NotImplementedError('{} tokenizer is not '
Mohammad's avatar
Mohammad committed
36
                                  'implemented.'.format(args.tokenizer_type))
37
38

    # Add vocab size.
Mohammad's avatar
Mohammad committed
39
40
    args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size,
                                                      args)
Mohammad's avatar
Mohammad committed
41
42
43
44

    return tokenizer


Mohammad's avatar
Mohammad committed
45
def _vocab_size_with_padding(orig_vocab_size, args):
Mohammad's avatar
Mohammad committed
46
47
48
49
50
    """Pad vocab size so it is divisible by model parallel size and
    still having GPU friendly size."""

    after = orig_vocab_size
    multiple = args.make_vocab_size_divisible_by * \
51
        args.tensor_model_parallel_size
Mohammad's avatar
Mohammad committed
52
53
54
55
56
57
58
    while (after % multiple) != 0:
        after += 1
    if args.rank == 0:
        print(' > padded vocab (size: {}) with {} dummy tokens '
              '(new size: {})'.format(
                  orig_vocab_size, after - orig_vocab_size, after), flush=True)
    return after
59
60
61
62
63
64
65
66
67
68
69
70
71
72


class AbstractTokenizer(ABC):
    """Abstract class for tokenizer."""

    def __init__(self, name):
        self.name = name
        super().__init__()

    @property
    @abstractmethod
    def vocab_size(self):
        pass

73
74
75
76
77
78
79
80
81
82
83
84
    @property
    @abstractmethod
    def vocab(self):
        """Dictionary from vocab text token to id token."""
        pass

    @property
    @abstractmethod
    def inv_vocab(self):
        """Dictionary from vocab id token to text token."""
        pass

85
86
87
88
    @abstractmethod
    def tokenize(self, text):
        pass

89
90
91
92
    def detokenize(self, token_ids):
        raise NotImplementedError('detokenizer is not implemented for {} '
                                  'tokenizer'.format(self.name))

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    @property
    def cls(self):
        raise NotImplementedError('CLS is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def sep(self):
        raise NotImplementedError('SEP is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def pad(self):
        raise NotImplementedError('PAD is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def eod(self):
        raise NotImplementedError('EOD is not provided for {} '
                                  'tokenizer'.format(self.name))

113
114
115
116
117
    @property
    def mask(self):
        raise NotImplementedError('MASK is not provided for {} '
                                  'tokenizer'.format(self.name))

118
119
120
121

class _BertWordPieceTokenizer(AbstractTokenizer):
    """Original BERT wordpiece tokenizer."""

122
    def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
123
124
125
126
127
128
129
130
131
        if lower_case:
            name = 'BERT Lower Case'
        else:
            name = 'BERT Upper Case'
        super().__init__(name)
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.pad_id = self.tokenizer.vocab['[PAD]']
Neel Kant's avatar
Neel Kant committed
132
        self.mask_id = self.tokenizer.vocab['[MASK]']
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        self._additional_special_tokens = []

        # (dsachan) Add BOS and EOS tokens
        SPECIAL_TOKENS = {'eos_token': '[EOS]',
                          'bos_token': '[BOS]'}
        self._bos_token = '[BOS]'
        self.add_token(self._bos_token)
        self._bos_token_id = self.vocab.get(self._bos_token)

        self._eos_token = '[EOS]'
        self.add_token(self._eos_token)
        self._eos_token_id = self.vocab.get(self._eos_token)

        # (dsachan) Add additional special tokens
        # These can be used as sentinel tokens in T5 model inputs
        additional_special_tokens = []
        additional_special_tokens.extend(
            ["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
        self.add_additional_special_tokens(additional_special_tokens)

    def add_token(self, token):
        if token not in self.vocab:
            self.inv_vocab[self.vocab_size] = token
            # self.vocab_size comes from len(vocab)
            # and it will increase as we add elements
            self.vocab[token] = self.vocab_size

    def add_additional_special_tokens(self, tokens_list):
        setattr(self, "additional_special_tokens", tokens_list)
        for value in tokens_list:
            self.add_token(value)
164
165
166
167
168

    @property
    def vocab_size(self):
        return self.tokenizer.vocab_size()

169
170
171
172
173
174
175
176
    @property
    def vocab(self):
        return self.tokenizer.vocab

    @property
    def inv_vocab(self):
        return self.tokenizer.inv_vocab

177
178
179
180
    def tokenize(self, text):
        text_tokens = self.tokenizer.tokenize(text)
        return self.tokenizer.convert_tokens_to_ids(text_tokens)

181
182
183
184
    def decode(self, ids):
        tokens = self.tokenizer.convert_ids_to_tokens(ids)
        return self.tokenizer.convert_tokens_to_string(tokens)

185
186
187
188
    def decode_token_ids(self, token_ids):
        tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
        exclude_list = ['[PAD]', '[CLS]']
        non_pads = [t for t in tokens if t not in exclude_list]
189
190
191
192
193
194
195
196
197

        result = ""
        for s in non_pads:
            if s.startswith("##"):
                result += s[2:]
            else:
                result += " " + s

        return result
198

199
200
201
202
203
204
205
206
207
208
209
    @property
    def cls(self):
        return self.cls_id

    @property
    def sep(self):
        return self.sep_id

    @property
    def pad(self):
        return self.pad_id
Mohammad's avatar
Mohammad committed
210

211
212
213
    @property
    def mask(self):
        return self.mask_id
Mohammad's avatar
Mohammad committed
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    @property
    def bos_token(self):
        """ Beginning of sentence token id """
        return self._bos_token

    @property
    def eos_token(self):
        """ End of sentence token id """
        return self._eos_token

    @property
    def additional_special_tokens(self):
        """ All the additional special tokens you may want to use (list of strings)."""
        return self._additional_special_tokens

    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary."""
        return self._bos_token_id

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary."""
        return self._eos_token_id

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers)."""
        return [self.vocab.get(token) for token in self._additional_special_tokens]

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

Neel Kant's avatar
Neel Kant committed
249

Mohammad's avatar
Mohammad committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
class _GPT2BPETokenizer(AbstractTokenizer):
    """Original GPT2 BPE tokenizer."""

    def __init__(self, vocab_file, merge_file):
        name = 'GPT2 BPE'
        super().__init__(name)

        self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace',
                                       special_tokens=[], max_len=None)
        self.eod_id = self.tokenizer.encoder['<|endoftext|>']

    @property
    def vocab_size(self):
        return len(self.tokenizer.encoder)

265
266
267
268
269
270
271
272
    @property
    def vocab(self):
        return self.tokenizer.encoder

    @property
    def inv_vocab(self):
        return self.tokenizer.decoder

Mohammad's avatar
Mohammad committed
273
274
275
    def tokenize(self, text):
        return self.tokenizer.encode(text)

276
277
278
    def detokenize(self, token_ids):
        return self.tokenizer.decode(token_ids)

Mohammad's avatar
Mohammad committed
279
280
281
    @property
    def eod(self):
        return self.eod_id
282
283
284
285
286
287
288
289
290


class _SentencePieceTokenizer(AbstractTokenizer):
    """SentencePieceTokenizer-Megatron wrapper"""

    def __init__(self, model_file, vocab_extra_ids=0):
        name = 'SentencePieceTokenizer'
        super().__init__(name)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
291
        import sentencepiece
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        self._tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
        self._initalize(vocab_extra_ids)

    def _initalize(self, vocab_extra_ids):
        self._vocab = {}
        self._inv_vocab = {}

        self._special_tokens = {}
        self._inv_special_tokens = {}

        self._t5_tokens = []

        for i in range(len(self._tokenizer)):
            t = self._tokenizer.id_to_piece(i)
            self._inv_vocab[i] = t
            self._vocab[t] = i

        def _add_special_token(t):
            if t not in self._vocab:
                next_id = len(self._vocab)
                self._vocab[t] = next_id
                self._inv_vocab[next_id] = t
            self._special_tokens[t] = self._vocab[t]
            self._inv_special_tokens[self._vocab[t]] = t

Vijay Korthikanti's avatar
Vijay Korthikanti committed
317
318
319
320
321
322
323
324
        _add_special_token('<CLS>')
        self._cls_id = self._vocab['<CLS>']
        _add_special_token('<SEP>')
        self._sep_id = self._vocab['<SEP>']
        _add_special_token('<EOD>')
        self._eod_id = self._vocab['<EOD>']
        _add_special_token('<MASK>')
        self._mask_id = self._vocab['<MASK>']
325
326
327
328
329
330

        pad_id = self._tokenizer.pad_id()
        try:
            pad_token = self._tokenizer.id_to_piece(pad_id)
        except IndexError:
            pad_token = '<PAD>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
332
        _add_special_token(pad_token)
        self._pad_id = self._vocab[pad_token]
333
334
335
336
337
338

        bos_id = self._tokenizer.bos_id()
        try:
            bos_token = self._tokenizer.id_to_piece(bos_id)
        except IndexError:
            bos_token = '<BOS>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
339
340
        _add_special_token(bos_token)
        self._bos_id = self._vocab[bos_token]
341
342
343
344
345
346

        eos_id = self._tokenizer.eos_id()
        try:
            eos_token = self._tokenizer.id_to_piece(eos_id)
        except IndexError:
            eos_token = '<EOS>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
347
348
        _add_special_token(eos_token)
        self._eos_id = self._vocab[eos_token]
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

        for i in range(vocab_extra_ids):
            t = "<extra_id_{}>".format(i)
            _add_special_token(t)
            self._t5_tokens += [t]

    @property
    def vocab_size(self):
        return len(self._vocab)

    @property
    def vocab(self):
        return self._vocab

    @property
    def inv_vocab(self):
        return self._inv_vocab

    # From:
    # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
    def tokenize(self, text):
        ids = []
        idx = 0

        while 1:
            indices = {}
            for token in self._special_tokens:
                try:
                    indices[token] = text[idx:].index(token)
                except ValueError:
                    continue
            if len(indices) == 0:
                break

            next_token = min(indices, key=indices.get)
            next_idx = idx + indices[next_token]

            ids.extend(self._tokenizer.encode_as_ids(text[idx:next_idx]))
            ids.append(self._special_tokens[next_token])
            idx = next_idx + len(next_token)

        ids.extend(self._tokenizer.encode_as_ids(text[idx:]))
        return ids

    # From:
    # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
    def detokenize(self, ids):
        text = ""
        last_i = 0

        for i, id in enumerate(ids):
            if id in self._inv_special_tokens:
                text += self._tokenizer.decode_ids(ids[last_i:i]) + " "
                text += self._inv_special_tokens[id] + " "
                last_i = i + 1

        text += self._tokenizer.decode_ids(ids[last_i:])
        return text.strip()

    @property
    def cls(self):
        return self._cls_id

    @property
    def sep(self):
        return self._sep_id

    @property
    def pad(self):
        return self._pad_id

    @property
    def bos_token_id(self):
        return self._bos_id

    @property
    def bos(self):
        return self._bos_id

    @property
    def eod(self):
        return self._eod_id

    @property
    def eos_token_id(self):
        return self._eos_id

    @property
    def eos(self):
        return self._eos_id

    @property
    def mask(self):
        return self._mask_id

    @property
    def additional_special_tokens_ids(self):
        return [self.vocab[k] for k in self._t5_tokens]