inpainting.py 4.95 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
2
#
Vijay Korthikanti's avatar
Vijay Korthikanti committed
3
4
5
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
i
6
7
8
9
10
11
12
13
14
15
import math
import apex
import einops
import torch
import torch.nn.functional as F
from megatron import get_args, print_rank_0
from megatron.model.utils import get_linear_layer
from megatron.model.vision.vit_backbone import VitBackbone
from megatron.model.module import MegatronModule
from megatron.model.vision.mit_backbone import mit_b3
Vijay Korthikanti's avatar
Vijay Korthikanti committed
16
from megatron.model.vision.utils import resize_
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150


class VitInpaintingModel(MegatronModule):

    def __init__(self, pre_process=True, post_process=True):
        super(VitInpaintingModel, self).__init__()
        args = get_args()

        self.pre_process = pre_process
        self.post_process = post_process
        self.hidden_size = args.hidden_size
        self.backbone = VitBackbone(
            pre_process=self.pre_process,
            post_process=self.post_process,
            class_token=False,
        )
        self.patch_dim = args.patch_dim
        self.img_h = args.img_h
        self.img_w = args.img_w
        self.seq_length = args.seq_length
        # full mask

        if self.post_process:
            self.linear_decoder = get_linear_layer(
                self.hidden_size,
                self.backbone.flatten_dim,
                torch.nn.init.zeros_
            )

    def set_input_tensor(self, input_tensor):
        self.backbone.set_input_tensor(input_tensor)

    def forward(self, input):

        hidden_states = self.backbone(input)

        if not self.post_process:
            return hidden_states
        decoded_output = self.linear_decoder(hidden_states)
        output = einops.rearrange(
                decoded_output,
                "b (h w) (p1 p2 c) -> b c (h p1) (w p2)",
                p1=self.patch_dim,
                p2=self.patch_dim,
                h=self.img_h//self.patch_dim,
                w=self.img_w//self.patch_dim,
            )

        return output


class MLP(torch.nn.Module):
    """
    Linear Embedding
    """
    def __init__(self, input_dim=2048, embed_dim=768):
        super().__init__()
        self.proj = torch.nn.Linear(input_dim, embed_dim)

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x


class MitInpaintingModel(MegatronModule):
    """Mix vision Transformer Model."""

    def __init__(self, pre_process=True, post_process=True):
        super(MitInpaintingModel, self).__init__()
        self.pre_process = pre_process
        self.post_process = post_process

        args = get_args()
        self.patch_dim = args.patch_dim
        self.img_h = args.img_h
        self.img_w = args.img_w
        self.flatten_dim = self.patch_dim * self.patch_dim * 3
        self.backbone = mit_b3()

        self.in_channels = [64, 128, 320, 512]
        self.embedding_dim = 768

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels

        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=self.embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=self.embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=self.embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=self.embedding_dim)

        self.conv_fuse = torch.nn.Conv2d(self.embedding_dim*4, self.embedding_dim, 1, 1, bias=False)
        self.norm = apex.parallel.SyncBatchNorm(self.embedding_dim)
        self.dropout = torch.nn.Dropout2d(0.1)
        
        self.linear_pred = torch.nn.Conv2d(self.embedding_dim, self.flatten_dim, kernel_size=1)
    
    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        pass

    def forward(self, input):
        c1, c2, c3, c4 = self.backbone(input)

        n, _, h, w = c4.shape
        _c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3])
        _c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False)
    
        _c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3])
        _c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False)

        _c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3])
        _c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False)

        _c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3])

        _c = torch.cat([_c4, _c3, _c2, _c1], dim=1)
        _c = self.conv_fuse(_c)
 
        x = self.norm(_c)
        x = F.relu(x, inplace=True)
        x = self.dropout(x)

        x = self.linear_pred(x)

        output = einops.rearrange(
            x,
            "b (c p1 p2) h w -> b c (h p1) (w p2)",
            p1=self.patch_dim,
            p2=self.patch_dim,
            h=self.img_h//self.patch_dim,
            w=self.img_w//self.patch_dim,
        )

        return output