scaled_upper_triang_masked_softmax.h 22.3 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
2
3
4
5
6
7
8
9
10
11
12
13

#pragma once

#include <assert.h>
#include <cuda_fp16.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>

namespace {

14
15
16
17
template <typename Datatype, int ELEMENTS_PER_LDG>
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);

template <>
18
19
20
21
22
23
24
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; }

template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2*) dst) = *((float2*) src); }
  
template <>
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst, const c10::Half *src) { *dst = *src; }
25
26

template <>
27
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst, const c10::Half *src) { *((float2*) dst) = *((float2*) src); }
28
29
30
31
32
33
34

template <>
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst, const uint8_t *src) { *dst = *src; }

template <>
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst, const uint8_t *src) {*((half2*) dst) = *((half2*) src); }

Vijay Korthikanti's avatar
Vijay Korthikanti committed
35
36
37
template <typename Datatype, int ELEMENTS_PER_LDG>
__device__ __inline__ void copy_zero_vector(Datatype *dst);

38
template <>
39
40
41
42
43
44
45
__device__ __inline__ void copy_zero_vector<c10::BFloat16, 1>(c10::BFloat16 *dst) { *dst = 0.0; }

template <>
__device__ __inline__ void copy_zero_vector<c10::BFloat16, 4>(c10::BFloat16 *dst) { *((float2*) dst) = make_float2(0.0f, 0.0f); }

template <>
__device__ __inline__ void copy_zero_vector<c10::Half, 1>(c10::Half *dst) { *dst = 0.0; }
46

Vijay Korthikanti's avatar
Vijay Korthikanti committed
47
template <>
48
__device__ __inline__ void copy_zero_vector<c10::Half, 4>(c10::Half *dst) { *((float2*) dst) = make_float2(0.0f, 0.0f); }
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
50


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
int log2_ceil(int value) {
    int log2_value = 0;
    while ((1 << log2_value) < value) ++log2_value;
    return log2_value;
}

template<typename T>
struct Add {
  __device__ __forceinline__ T operator()(T a, T b) const {
    return a + b;
  }
};

template<typename T>
struct Max {
  __device__ __forceinline__ T operator()(T a, T b) const {
    return a < b ? b : a;
  }
};

template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
    return __shfl_xor_sync(mask, value, laneMask, width);
#else
    return __shfl_xor(value, laneMask, width);
#endif
}

template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
    ReduceOp<acc_t> r;
    #pragma unroll
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        #pragma unroll
        for (int i = 0;  i < WARP_BATCH;  ++i) {
            acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
            sum[i] = r(sum[i], b);
        }
    }
}

/*
 * Extended softmax (from native aten pytorch) with following additional features
 * 1) input scaling
 * 2) Implicit time (diagonal masking)
98
 */
99
100
101
102
103
template <typename input_t, typename output_t, typename acc_t, int log2_elements>
__global__ void scaled_upper_triang_masked_softmax_warp_forward(
    output_t *dst, 
    const input_t *src, 
    const acc_t scale, 
104
    int micro_batch_size, 
105
106
107
108
109
110
111
112
113
    int stride, 
    int element_count) 
{
    // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and 
    // warp_size of method warp_softmax_forward_kernel.
    constexpr int next_power_of_two = 1 << log2_elements;
    constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
    constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
    constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
114
    constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
115
116
117

    int first_batch = (blockDim.y * blockIdx.y + threadIdx.y) * gridDim.x * WARP_BATCH + blockIdx.x;
    int local_seq = blockIdx.x + 1; 
118
    int warp_iteration_limit = (local_seq + ELEMENTS_PER_LDG_STG * WARP_SIZE - 1)/ WARP_SIZE;
119

120
    // micro_batch_size might not be a multiple of WARP_BATCH. Check how
121
    // many batches have to computed within this WARP.
122
    int local_batches = micro_batch_size - first_batch;
123
124
125
126
127
128
    if (local_batches > WARP_BATCH)
        local_batches = WARP_BATCH;

    // there might be multiple batches per warp. compute the index within the batch
    int local_idx = threadIdx.x;

129
130
    src += first_batch * stride + ELEMENTS_PER_LDG_STG * local_idx;
    dst += first_batch * stride + ELEMENTS_PER_LDG_STG * local_idx;
131
132
133

    // load data from global memory
    acc_t elements[WARP_BATCH][WARP_ITERATIONS];
134
    input_t temp_data[ELEMENTS_PER_LDG_STG];
135
136
137
138
    #pragma unroll
    for (int i = 0;  i < WARP_BATCH;  ++i) {
        int batch_element_count = (i >= local_batches) ? 0 : local_seq;

139
140
141
142
        #pragma unroll
        for (int it = 0;  it < WARP_ITERATIONS;  it+=ELEMENTS_PER_LDG_STG) {
            int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;

143
            if (element_index < batch_element_count) {
144
                copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_data, src + i*element_count*stride + it*WARP_SIZE);
145
146
147

                #pragma unroll
                for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
148
149
150
151
152
                    if ((element_index + element) < batch_element_count) {
                        elements[i][it+element] = (acc_t)temp_data[element] * scale;
                    } else {
                        elements[i][it + element] = -std::numeric_limits<acc_t>::infinity();
                    }
153
                }
154
            } else {
155
156
157
158
                #pragma unroll
                for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
                    elements[i][it + element] = -std::numeric_limits<acc_t>::infinity();
                }
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            }
        }
    }

    // compute max_value
    acc_t max_value[WARP_BATCH];
    #pragma unroll
    for (int i = 0;  i < WARP_BATCH;  ++i) {
        max_value[i] = elements[i][0];
        #pragma unroll
        for (int it = 1;  it < WARP_ITERATIONS;  ++it) {
            max_value[i] = (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
        }
    }
    warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);

    acc_t sum[WARP_BATCH] { 0.0f };
    #pragma unroll
    for (int i = 0;  i < WARP_BATCH;  ++i) {
        #pragma unroll
        for (int it = 0;  it < WARP_ITERATIONS;  ++it) {
180
            if (it < warp_iteration_limit) {
181
182
                elements[i][it] = std::exp((elements[i][it] - max_value[i]));
                sum[i] += elements[i][it];
183
            } 
184
185
186
187
188
        }
    }
    warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);

    // store result
189
    output_t out[ELEMENTS_PER_LDG_STG];
190
191
192
193
194
    #pragma unroll
    for (int i = 0;  i < WARP_BATCH;  ++i) {
        if (i >= local_batches)
            break;
        #pragma unroll
195
196
197
        for (int it = 0;  it < WARP_ITERATIONS;  it+=ELEMENTS_PER_LDG_STG) {
            int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;

198
            if (element_index < local_seq) {
199
200
201

                #pragma unroll  
                for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
202
203
204
205
206
                    if (element_index + element < local_seq) {
                        out[element] = elements[i][it + element] / sum[i];
                    } else {
                        out[element] = 0;
                    }
207
208
                }
                copy_vector<output_t, ELEMENTS_PER_LDG_STG>(dst + i * element_count * stride + it * WARP_SIZE, out);
209
            } else if (element_index < element_count) {
Vijay Korthikanti's avatar
Vijay Korthikanti committed
210
                copy_zero_vector<output_t, ELEMENTS_PER_LDG_STG>(dst + i * element_count * stride + it * WARP_SIZE);
211
212
213
214
215
216
217
218
219
220
221
222
223
            } else {
                break;
            } 
        }
    }
}

template <typename input_t, typename output_t, typename acc_t, int log2_elements>
__global__ void scaled_upper_triang_masked_softmax_warp_backward(
    output_t *gradInput, 
    input_t *grad, 
    const input_t *output,
    acc_t scale, 
224
    int micro_batch_size, 
225
226
227
228
229
230
231
232
233
    int stride, 
    int element_count)
{
    // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and 
    // warp_size of method warp_softmax_backward_kernel.
    constexpr int next_power_of_two = 1 << log2_elements;
    constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
    constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
    constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
234
    constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
235
236
237
238

    int first_batch = (blockDim.y * blockIdx.y + threadIdx.y) * gridDim.x * WARP_BATCH + blockIdx.x;
    int local_seq = blockIdx.x + 1; 
    
239
    // micro_batch_size might not be a multiple of WARP_BATCH. Check how
240
    // many batches have to computed within this WARP.
241
    int local_batches = micro_batch_size - first_batch;
242
243
244
245
246
247
248
    if (local_batches > WARP_BATCH)
        local_batches = WARP_BATCH;

    // there might be multiple batches per warp. compute the index within the batch
    int local_idx = threadIdx.x;

    // the first element to process by the current thread
249
    int thread_offset = first_batch * stride + ELEMENTS_PER_LDG_STG * local_idx;
250
251
252
253
254
255
    grad += thread_offset;
    output += thread_offset;
    gradInput += thread_offset;

    // load data from global memory
    acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS] { 0.0f };
256
257
258
    acc_t output_reg[WARP_BATCH][WARP_ITERATIONS] { 0.0f };
    input_t temp_grad[ELEMENTS_PER_LDG_STG];
    input_t temp_output[ELEMENTS_PER_LDG_STG];
259
260
261
262
263
    #pragma unroll
    for (int i = 0;  i < WARP_BATCH;  ++i) {
        int batch_element_count = (i >= local_batches) ? 0 : local_seq;

        #pragma unroll
264
265
266
267
268
        for (int it = 0;  it < WARP_ITERATIONS;  it+=ELEMENTS_PER_LDG_STG) {
            int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
            if (element_index < batch_element_count) {
                copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_grad, grad + i * element_count * stride + it * WARP_SIZE);
                copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_output, output + i * element_count * stride + it * WARP_SIZE);
269

270
271
                #pragma unroll
                for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
272
273
274
                    if (element_index + element < batch_element_count) {
                        output_reg[i][it + element] = (acc_t)temp_output[element];
                    }
275
276
277
                }
                #pragma unroll
                for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
278
279
280
                    if (element_index + element < batch_element_count) {
                        grad_reg[i][it + element] = (acc_t)temp_grad[element] * output_reg[i][it + element];
                    }
281
282
                }
            }
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        }
    }
   
    acc_t sum[WARP_BATCH];
    #pragma unroll
    for (int i = 0;  i < WARP_BATCH;  ++i) {
        sum[i] = grad_reg[i][0];
        #pragma unroll
        for (int it = 1;  it < WARP_ITERATIONS;  ++it) {
            sum[i] += grad_reg[i][it];
        }
    }
    warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);

    // store result
    #pragma unroll
    for (int i = 0;  i < WARP_BATCH;  ++i) {
        if (i >= local_batches)
            break;
        #pragma unroll
303
304
        for (int it = 0;  it < WARP_ITERATIONS;  it+=ELEMENTS_PER_LDG_STG) {
            int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
305
306
            if (element_index < element_count) {
                // compute gradients
307
308
309
310
311
312
                output_t out[ELEMENTS_PER_LDG_STG];
                #pragma unroll
                for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
                    out[element] = (output_t)(scale * (grad_reg[i][it + element] - output_reg[i][it + element] * sum[i]));
                }
                copy_vector<output_t, ELEMENTS_PER_LDG_STG>(gradInput + i * element_count * stride + it * WARP_SIZE, out);
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
            } 
        }
    }
}

} // end of anonymous namespace

template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_upper_triang_masked_softmax_forward(
    output_t *dst, 
    const input_t *src, 
    const input_t scale, 
    int softmax_elements, 
    int softmax_elements_stride, 
    int attn_batches)
{
hyunwoongko's avatar
hyunwoongko committed
329
    TORCH_INTERNAL_ASSERT(softmax_elements >= 0 && softmax_elements <= 2048 );
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    if (softmax_elements == 0) {
        return;
    } else {
        int log2_elements = log2_ceil(softmax_elements);
        const int next_power_of_two = 1 << log2_elements;
        int seq_len = softmax_elements;
        int batch_count = attn_batches * seq_len;

        // This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward.
        int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;

        // This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward.
        int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;

        // use 128 threads per block to maximimize gpu utilization
        constexpr int threads_per_block = 128;

        int warps_per_block = (threads_per_block / warp_size);
        int batches_per_block = warps_per_block * batches_per_warp;
hyunwoongko's avatar
hyunwoongko committed
349
350
        TORCH_INTERNAL_ASSERT(attn_batches % batches_per_block == 0);

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        int blocks_per_seq = attn_batches / batches_per_block;
        dim3 blocks(seq_len, blocks_per_seq, 1);
        dim3 threads(warp_size, warps_per_block, 1);
        // Launch code would be more elegant if C++ supported FOR CONSTEXPR
        switch (log2_elements) {
            case 0: // 1
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 0>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 1: // 2
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 1>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 2: // 4
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 2>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 3: // 8
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 3>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 4: // 16
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 4>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 5: // 32
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 5>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 6: // 64
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 6>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 7: // 128
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 7>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 8: // 256
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 8>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 9: // 512
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 9>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 10: // 1024
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 10>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 11: // 2048
                scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 11>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            default:
                break;
        }
    }
}

template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_upper_triang_masked_softmax_backward(
    output_t *grad_input, 
    input_t *grad, 
    const input_t *output, 
    const acc_t scale, 
    int softmax_elements, 
    int softmax_elements_stride, 
    int attn_batches)
{
hyunwoongko's avatar
hyunwoongko committed
420
    TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 2048 );
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    if (softmax_elements == 0) {
       return;
    } else {
        int log2_elements = log2_ceil(softmax_elements);
        const int next_power_of_two = 1 << log2_elements;
        int seq_len = softmax_elements;
        int batch_count = attn_batches * seq_len;

        // This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
        int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;

        // This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
        int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;

        // use 128 threads per block to maximimize gpu utilization
        constexpr int threads_per_block = 128;

        int warps_per_block = (threads_per_block / warp_size);
        int batches_per_block = warps_per_block * batches_per_warp;
hyunwoongko's avatar
hyunwoongko committed
440
441
        TORCH_INTERNAL_ASSERT(attn_batches % batches_per_block == 0);

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        int blocks_per_seq = attn_batches / batches_per_block;
        dim3 blocks(seq_len, blocks_per_seq, 1);
        dim3 threads(warp_size, warps_per_block, 1);
        // Launch code would be more elegant if C++ supported FOR CONSTEXPR
        switch (log2_elements) {
            case 0: // 1
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 0>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 1: // 2
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 1>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 2: // 4
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 2>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 3: // 8
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 3>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 4: // 16
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 4>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 5: // 32
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 5>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 6: // 64
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 6>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 7: // 128
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 7>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 8: // 256
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 8>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 9: // 512
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 9>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 10: // 1024
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 10>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            case 11: // 2048
                scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 11>
                    <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
                break;
            default:
                break;
        }
    }
}