data_samplers.py 7.21 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
2
3
4
5
6

"""Dataloaders."""


import random
7
8
9
import torch
import numpy as np
from torch.utils.data import Dataset
Vijay Korthikanti's avatar
Vijay Korthikanti committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from megatron import get_args
from megatron import mpu


def build_pretraining_data_loader(dataset, consumed_samples):
    """Buld dataloader given an input dataset."""

    if dataset is None:
        return None
    args = get_args()

    # Megatron sampler
    if args.dataloader_type == 'single':
        batch_sampler = MegatronPretrainingSampler(
            total_samples=len(dataset),
            consumed_samples=consumed_samples,
            micro_batch_size=args.micro_batch_size,
            data_parallel_rank=mpu.get_data_parallel_rank(),
            data_parallel_size=mpu.get_data_parallel_world_size())
    elif args.dataloader_type == 'cyclic':
        batch_sampler = MegatronPretrainingRandomSampler(
31
            dataset,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
32
33
34
35
            total_samples=len(dataset),
            consumed_samples=consumed_samples,
            micro_batch_size=args.micro_batch_size,
            data_parallel_rank=mpu.get_data_parallel_rank(),
36
37
            data_parallel_size=mpu.get_data_parallel_world_size(),
            data_sharding=args.data_sharding)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
43
44
45
46
47
48
49
50
    else:
        raise Exception('{} dataloader type is not supported.'.format(
                args.dataloader_type))

    # Torch dataloader.
    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

class MegatronPretrainingSampler:

    def __init__(self, total_samples, consumed_samples, micro_batch_size,
51
                 data_parallel_rank, data_parallel_size, drop_last=True):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
52
53
54
55
56
57
58
        # Keep a copy of input params for later use.
        self.total_samples = total_samples
        self.consumed_samples = consumed_samples
        self.micro_batch_size = micro_batch_size
        self.data_parallel_rank = data_parallel_rank
        self.micro_batch_times_data_parallel_size = \
            self.micro_batch_size * data_parallel_size
59
        self.drop_last = drop_last
Vijay Korthikanti's avatar
Vijay Korthikanti committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

        # Sanity checks.
        assert self.total_samples > 0, \
            'no sample to consume: {}'.format(self.total_samples)
        assert self.consumed_samples < self.total_samples, \
            'no samples left to consume: {}, {}'.format(self.consumed_samples,
                                                        self.total_samples)
        assert self.micro_batch_size > 0
        assert data_parallel_size > 0
        assert self.data_parallel_rank < data_parallel_size, \
            'data_parallel_rank should be smaller than data size: {}, ' \
            '{}'.format(self.data_parallel_rank, data_parallel_size)

    def __len__(self):
        return self.total_samples

76
77
78
79
80
    def get_start_end_idx(self):
        start_idx = self.data_parallel_rank * self.micro_batch_size
        end_idx = start_idx + self.micro_batch_size
        return start_idx, end_idx

Vijay Korthikanti's avatar
Vijay Korthikanti committed
81
82
    def __iter__(self):
        batch = []
83
        # Last batch will be dropped if drop_last is not set False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
84
85
86
        for idx in range(self.consumed_samples, self.total_samples):
            batch.append(idx)
            if len(batch) == self.micro_batch_times_data_parallel_size:
87
                start_idx, end_idx = self.get_start_end_idx()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
88
89
90
                yield batch[start_idx:end_idx]
                batch = []

91
92
93
94
95
        # Check the last partial batch and see drop_last is set
        if len(batch) > 0 and not self.drop_last:
            start_idx, end_idx = self.get_start_end_idx()
            yield batch[start_idx:end_idx]

Vijay Korthikanti's avatar
Vijay Korthikanti committed
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
class RandomSeedDataset(Dataset):

    def __init__(self, dataset):
        args = get_args()
        self.base_seed = args.seed
        self.curr_seed = args.seed
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def set_epoch(self, epoch):
        self.curr_seed = self.base_seed + epoch

    def __getitem__(self, idx):
        seed = idx + self.curr_seed
        torch.manual_seed(seed)
        random.seed(seed)
        np.random.seed(seed)
        return self.dataset[idx]


Vijay Korthikanti's avatar
Vijay Korthikanti committed
119
120
class MegatronPretrainingRandomSampler:

121
122
    def __init__(self, dataset, total_samples, consumed_samples, micro_batch_size,
                 data_parallel_rank, data_parallel_size, data_sharding):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
123
        # Keep a copy of input params for later use.
124
        self.dataset = dataset
Vijay Korthikanti's avatar
Vijay Korthikanti committed
125
126
127
128
129
        self.total_samples = total_samples
        self.consumed_samples = consumed_samples
        self.micro_batch_size = micro_batch_size
        self.data_parallel_rank = data_parallel_rank
        self.data_parallel_size = data_parallel_size
130
        self.data_sharding = data_sharding
Vijay Korthikanti's avatar
Vijay Korthikanti committed
131
132
        self.micro_batch_times_data_parallel_size = \
            self.micro_batch_size * data_parallel_size
133
134
        self.last_batch_size = \
            self.total_samples % self.micro_batch_times_data_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        # Sanity checks.
        assert self.total_samples > 0, \
            'no sample to consume: {}'.format(self.total_samples)
        assert self.micro_batch_size > 0
        assert data_parallel_size > 0
        assert self.data_parallel_rank < data_parallel_size, \
            'data_parallel_rank should be smaller than data size: {}, ' \
            '{}'.format(self.data_parallel_rank, data_parallel_size)

    def __len__(self):
        return self.total_samples

    def __iter__(self):
149
150
151
        active_total_samples = self.total_samples - self.last_batch_size
        self.epoch = self.consumed_samples // active_total_samples
        current_epoch_samples = self.consumed_samples % active_total_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
152
153
        assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0

Vijay Korthikanti's avatar
Vijay Korthikanti committed
154
        if isinstance(self.dataset, RandomSeedDataset):
155
156
            self.dataset.set_epoch(self.epoch)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
157
        # data sharding and random sampling
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        if self.data_sharding:
            bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) \
                           * self.micro_batch_size
            bucket_offset = current_epoch_samples // self.data_parallel_size
            start_idx = self.data_parallel_rank * bucket_size
            
            g = torch.Generator()
            g.manual_seed(self.epoch)
            random_idx = torch.randperm(bucket_size, generator=g).tolist()
            idx_range = [start_idx + x for x in random_idx[bucket_offset:]]
        else:
            full_bucket_size = (self.total_samples // self.micro_batch_size) \
                                * self.micro_batch_size
            full_bucket_offset = current_epoch_samples
            g = torch.Generator()
            g.manual_seed(self.epoch)
            idx_range_total = \
                torch.randperm(full_bucket_size, generator=g).tolist()
            idx_range_active = idx_range_total[full_bucket_offset:]
            idx_range = idx_range_active[self.data_parallel_rank::self.data_parallel_size]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
178
179
180
181
182
183
184
185
186

        batch = []
        # Last batch if not complete will be dropped.
        for idx in idx_range:
            batch.append(idx)
            if len(batch) == self.micro_batch_size:
                self.consumed_samples += self.micro_batch_times_data_parallel_size
                yield batch
                batch = []