mnli.py 3.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""MNLI dataset."""

18
from megatron import print_rank_0
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from tasks.data_utils import clean_text
from .data import GLUEAbstractDataset


LABELS = {'contradiction': 0, 'entailment': 1, 'neutral': 2}


class MNLIDataset(GLUEAbstractDataset):

    def __init__(self, name, datapaths, tokenizer, max_seq_length,
                 test_label='contradiction'):
        self.test_label = test_label
        super().__init__('MNLI', name, datapaths,
                         tokenizer, max_seq_length)


    def process_samples_from_single_path(self, filename):
        """"Implement abstract method."""
        print_rank_0(' > Processing {} ...'.format(filename))

        samples = []
        total = 0
        first = True
        is_test = False
        with open(filename, 'r') as f:
            for line in f:
                row = line.strip().split('\t')
                if first:
                    first = False
                    if len(row) == 10:
                        is_test = True
                        print_rank_0(
                            '   reading {}, {} and {} columns and setting '
                            'labels to {}'.format(
                                row[0].strip(), row[8].strip(),
                                row[9].strip(), self.test_label))
                    else:
                        print_rank_0('    reading {} , {}, {}, and {} columns '
                                     '...'.format(
                                         row[0].strip(), row[8].strip(),
                                         row[9].strip(), row[-1].strip()))
                    continue

                text_a = clean_text(row[8].strip())
                text_b = clean_text(row[9].strip())
                unique_id = int(row[0].strip())
                label = row[-1].strip()
                if is_test:
                    label = self.test_label

                assert len(text_a) > 0
                assert len(text_b) > 0
                assert label in LABELS
                assert unique_id >= 0

                sample = {'text_a': text_a,
                          'text_b': text_b,
                          'label': LABELS[label],
                          'uid': unique_id}
                total += 1
                samples.append(sample)

                if total % 50000 == 0:
                    print_rank_0('  > processed {} so far ...'.format(total))

        print_rank_0(' >> processed {} samples.'.format(len(samples)))
        return samples