finetune.py 3.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""GLUE finetuning/evaluation."""

18
from megatron import print_rank_0
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from megatron.model.classification import Classification
from tasks.eval_utils import accuracy_func_provider
from tasks.finetune_utils import finetune


def glue_classification(args, num_classes, Dataset,
                        name_from_datapath_func):

    def train_valid_datasets_provider(args):
        """Build train and validation dataset."""
        train_dataset = Dataset('training', args.train_data,
                                args.tokenizer, args.seq_length)
        valid_dataset = Dataset('validation', args.valid_data,
                                args.tokenizer, args.seq_length)
        return train_dataset, valid_dataset


    def model_provider(args):
        """Build the model."""
        print_rank_0('building classification model for {} ...'.format(
            args.task))
        return Classification(
            num_classes=num_classes,
            num_layers=args.num_layers,
            vocab_size=args.vocab_size,
            hidden_size=args.hidden_size,
            num_attention_heads=args.num_attention_heads,
            embedding_dropout_prob=args.hidden_dropout,
            attention_dropout_prob=args.attention_dropout,
            output_dropout_prob=args.hidden_dropout,
            max_sequence_length=args.max_position_embeddings,
            checkpoint_activations=args.checkpoint_activations)


    def metrics_func_provider(args):
        """Privde metrics callback function."""
        def single_dataset_provider(datapath, args):
            name = name_from_datapath_func(datapath)
            return Dataset(name, [datapath], args.tokenizer, args.seq_length)
        return accuracy_func_provider(args, single_dataset_provider)


    """Finetune/evaluate."""
    finetune(args, train_valid_datasets_provider, model_provider,
             end_of_epoch_callback_provider=metrics_func_provider)


def main(args):

    if args.task == 'MNLI':

        num_classes = 3
        from .mnli import MNLIDataset as Dataset
        def name_from_datapath(datapath):
            return datapath.split('MNLI')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    elif args.task == 'QQP':

        num_classes = 2
        from .qqp import QQPDataset as Dataset
        def name_from_datapath(datapath):
            return datapath.split('QQP')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    else:
        raise NotImplementedError('GLUE task {} is not implemented.'.format(
            args.task))

    glue_classification(args, num_classes, Dataset, name_from_datapath)