data.py 2.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""GLUE dataset."""

from abc import ABC
from abc import abstractmethod

from torch.utils.data import Dataset

23
from megatron import print_rank_0
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from tasks.data_utils import build_sample
from tasks.data_utils import build_tokens_types_paddings_from_text


class GLUEAbstractDataset(ABC, Dataset):
    """GLUE base dataset class."""

    def __init__(self, task_name, dataset_name, datapaths,
                 tokenizer, max_seq_length):
        # Store inputs.
        self.task_name = task_name
        self.dataset_name = dataset_name
        self.tokenizer = tokenizer
        self.max_seq_length = max_seq_length
        print_rank_0(' > building {} dataset for {}:'.format(self.task_name,
                                                             self.dataset_name))
        # Process the files.
        string = '  > paths:'
        for path in datapaths:
            string += ' ' + path
        print_rank_0(string)
        self.samples = []
        for datapath in datapaths:
            self.samples.extend(self.process_samples_from_single_path(datapath))
        print_rank_0('  >> total number of samples: {}'.format(
            len(self.samples)))


    def __len__(self):
        return len(self.samples)


    def __getitem__(self, idx):
        raw_sample = self.samples[idx]
        ids, types, paddings = build_tokens_types_paddings_from_text(
            raw_sample['text_a'], raw_sample['text_b'],
            self.tokenizer, self.max_seq_length)
        sample = build_sample(ids, types, paddings,
                              raw_sample['label'], raw_sample['uid'])
        return sample


    @abstractmethod
    def process_samples_from_single_path(self, datapath):
        """Abstract method that takes a single path / filename and
        returns a list of dataset samples, each sample being a dict of
            {'text_a': string, 'text_b': string, 'label': int, 'uid': int}
        """
        pass