"examples/pytorch/eges/sampler.py" did not exist on "a0bf5daa6576a6899b933b11374a9864a1305051"
finetune_utils.py 9.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Finetune utilities."""

import torch

from megatron import mpu
from megatron.data.tokenizer import add_tokenizer_to_args
from megatron.training import evaluate_and_print_results
from megatron.training import initialize_megatron
from megatron.training import setup_model_and_optimizer
from megatron.training import train_step
from megatron.training import training_log
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import load_checkpoint
29
from megatron import print_rank_0
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from megatron.utils import reduce_losses
from megatron.utils import save_checkpoint


def process_batch(batch, args):
    """Process batch and produce inputs for the model."""

    tokens = batch['text'].long().cuda().contiguous()
    types = batch['types'].long().cuda().contiguous()
    labels = batch['label'].long().cuda().contiguous()
    attention_mask = batch['padding_mask'].float().cuda().contiguous()
    if args.fp16:
        attention_mask = attention_mask.half()

    return tokens, types, labels, attention_mask


def _cross_entropy_forward_step(batch, model, args, timers):
    """Simple forward step with cross-entropy loss."""

    # Get the batch.
    timers('batch generator').start()
    try:
        batch_ = next(batch)
    except:
        batch_ = batch
    tokens, types, labels, attention_mask = process_batch(batch_, args)
    timers('batch generator').stop()

    # Forward model.
    logits = model(tokens, attention_mask, types)

    # Cross-entropy loss.
    loss_func = torch.nn.CrossEntropyLoss()
    loss = loss_func(logits.contiguous().float(), labels)

    # Reduce loss for logging.
    reduced_loss = reduce_losses([loss])

    return loss, {'lm loss': reduced_loss[0]}


def build_data_loader(dataset, batch_size, num_workers, drop_last):
    """Data loader. Note that batch-size is the local (per GPU) batch-size."""

    # Sampler.
    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    sampler = torch.utils.data.distributed.DistributedSampler(
        dataset, num_replicas=world_size, rank=rank)

    # Data loader. Note that batch size is the per GPU batch size.
    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              sampler=sampler,
                                              shuffle=False,
                                              num_workers=num_workers,
                                              drop_last=drop_last,
                                              pin_memory=True)

    return data_loader


def _build_infinite_size_dataloader(dataloader):
    """Build a looped dataloader with infinite size."""

    iterator = dataloader.__iter__()
    while True:
        try:
            yield iterator.__next__()
        except StopIteration:
            iterator = dataloader.__iter__()


def _build_train_valid_dataloaders(train_dataset, valid_dataset, args):
    """Traing and validation dataloaders."""

    print_rank_0('building train and validation dataloaders ...')
    # Training dataset.
    train_dataloader = build_data_loader(train_dataset, args.batch_size,
                                         args.num_workers, not args.keep_last)
    # Set the training iterations.
    args.train_iters_per_epoch = len(train_dataloader)
    args.train_iters = args.epochs * args.train_iters_per_epoch
    # Validation dataset. For this dataset, we do not need to set up
    # shuffling so we can just use a simple infinite loop.
    valid_dataloader_ = build_data_loader(valid_dataset, args.batch_size,
                                          args.num_workers, not args.keep_last)
    valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_)

    return train_dataloader, valid_dataloader


def _train(model, optimizer, lr_scheduler, forward_step,
           train_dataloader, valid_dataloader,
           end_of_epoch_callback, timers, args, writer):
    """Train the model."""

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    losses_dict_sum = {}

    # Starting epoch and iteration
    start_epoch = args.iteration // args.train_iters_per_epoch
    start_iteration = args.iteration % args.train_iters_per_epoch
    iteration = args.iteration

    # Memory reporting flag.
    report_memory_flag = True

    # For each remaining epoch
    timers('interval time').start()
    for epoch in range(start_epoch, args.epochs):
        print_rank_0('working on epoch {} ...'.format(epoch+1))

        # Set the data loader epoch to shuffle the index iterator.
        train_dataloader.sampler.set_epoch(args.seed + epoch)

        # For all the batches in the dataset.
        for iteration_, batch in enumerate(train_dataloader):

            # Ignore the iterations before starting value
            if iteration_ < start_iteration:
                continue
            # Set to zero so the next epoch does not skip any batches.
            start_iteration = 0

            # Train for one step.
            losses_dict, _ = train_step(forward_step, batch, model, optimizer,
                                        lr_scheduler, args, timers)
            iteration += 1

            # Logging.
            report_memory_flag = training_log(losses_dict, losses_dict_sum,
                                              optimizer.param_groups[0]['lr'],
                                              iteration, optimizer.loss_scale,
                                              report_memory_flag, writer,
                                              args, timers)

            # Autoresume
            if args.adlr_autoresume  and \
               (iteration % args.adlr_autoresume_interval == 0):
                check_adlr_autoresume_termination(iteration, model, optimizer,
                                                  lr_scheduler, args)

            # Checkpointing
            if args.save and args.save_interval and \
               iteration % args.save_interval == 0:
                save_checkpoint(iteration, model, optimizer, lr_scheduler, args)

            # Evaluation
            if args.eval_interval and iteration % args.eval_interval == 0:
                prefix = 'iteration {}'.format(iteration)
                evaluate_and_print_results(prefix, forward_step,
                                           valid_dataloader, model, args,
                                           writer, iteration, timers, False)

        # Checkpointing at the end of each epoch.
        if args.save:
            save_checkpoint(iteration, model, optimizer, lr_scheduler, args)

        # Callback at the end of each epoch.
        if end_of_epoch_callback is not None:
            end_of_epoch_callback(model, args, epoch)


def finetune(args, train_valid_datasets_provider, model_provider,
             forward_step=_cross_entropy_forward_step,
             end_of_epoch_callback_provider=None):
    """Main finetune function used across all tasks."""

    # Initialize megatron and get args, timers, and Tensorboard writer.
    timers, writer = initialize_megatron(
        'finetune model for {} ...'.format(args.task), args)

    # Add tokenizer to the args.
    add_tokenizer_to_args(args, args.tokenizer_type)

    # Train and validation data loaders.
    if args.epochs > 0:
        train_dataset, valid_dataset = train_valid_datasets_provider(args)
        train_dataloader, valid_dataloader = _build_train_valid_dataloaders(
            train_dataset, valid_dataset, args)

    # Build calback function.
    end_of_epoch_callback = None
    if end_of_epoch_callback_provider is not None:
        end_of_epoch_callback = end_of_epoch_callback_provider(args)

    # Build model, optimizer and learning rate scheduler.
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               args)

    # If pretrained checkpoint is provided and we have not trained for
    # any iteration (i.e., iteration is zero), then load the pretrained
    # checkpoint.
    if args.iteration == 0 and args.pretrained_checkpoint is not None:
        original_load = args.load
        args.load = args.pretrained_checkpoint
        _ = load_checkpoint(model, None, None, args)
        args.load = original_load
        # This is critical when only model is loaded. We should make sure
        # master parameters are also updated.
        if args.fp16:
            optimizer._model_params_to_master_params()


    # Finetune the model.
    if args.epochs > 0:
        _train(model, optimizer, lr_scheduler, forward_step,
               train_dataloader, valid_dataloader,
               end_of_epoch_callback, timers, args, writer)
    # Or just evaluate.
    else:
        if end_of_epoch_callback is not None:
            print_rank_0('evaluation only mode, setting epoch to -1')
            end_of_epoch_callback(model, args, epoch=-1,
                                  output_predictions=True)

    print_rank_0('done :-)')