classification.py 3.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Vision Transformer(VIT) model."""

import torch
from megatron import get_args
from megatron.model.utils import get_linear_layer
from megatron.model.vision.vit_backbone import VitBackbone, VitMlpHead
22
23
from megatron.model.vision.mit_backbone import mit_b3_avg
from megatron.model.vision.utils import trunc_normal_
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from megatron.model.module import MegatronModule

class VitClassificationModel(MegatronModule):
    """Vision Transformer Model."""

    def __init__(self, num_classes, finetune=False,
                 pre_process=True, post_process=True):
        super(VitClassificationModel, self).__init__()
        args = get_args()

        self.hidden_size = args.hidden_size
        self.num_classes = num_classes
        self.finetune = finetune
        self.pre_process = pre_process
        self.post_process = post_process
        self.backbone = VitBackbone(
            pre_process=self.pre_process,
            post_process=self.post_process,
            single_token_output=True
        )
        
        if self.post_process:
            if not self.finetune:
                self.head = VitMlpHead(self.hidden_size, self.num_classes)
            else:
                self.head = get_linear_layer(
                    self.hidden_size,
                    self.num_classes,
                    torch.nn.init.zeros_
                )

    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        self.backbone.set_input_tensor(input_tensor)

    def forward(self, input):
        hidden_states = self.backbone(input)

        if self.post_process:
            hidden_states = self.head(hidden_states)

        return hidden_states
66
67
68
69
70


class MitClassificationModel(MegatronModule):
    """Mix vision Transformer Model."""

Vijay Korthikanti's avatar
Vijay Korthikanti committed
71
    def __init__(self, num_classes,
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
                 pre_process=True, post_process=True):
        super(MitClassificationModel, self).__init__()
        args = get_args()

        self.hidden_size = args.hidden_size
        self.num_classes = num_classes

        self.backbone = mit_b3_avg()
        self.head = torch.nn.Linear(512, num_classes)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, torch.nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, torch.nn.Linear) and m.bias is not None:
                torch.nn.init.constant_(m.bias, 0)

    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        pass

    def forward(self, input):
        hidden_states = self.backbone(input)
        hidden_states = self.head(hidden_states)

        return hidden_states