test_mlp.py 2.05 KB
Newer Older
liangjing's avatar
v1  
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import pytest

import torch

from megatron.core.transformer.mlp import MLP
from tests.unit_tests.test_utilities import Utils
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from megatron.core.transformer.transformer_config import TransformerConfig

class TestParallelMLP:

    def setup_method(self, method):
        Utils.initialize_model_parallel(1,1)
        model_parallel_cuda_manual_seed(123)
        transformer_config = TransformerConfig(num_layers=2, hidden_size=12, num_attention_heads=4, use_cpu_initialization=True)
        self.mlp = MLP(transformer_config)

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    def test_constructor(self):
        assert isinstance(self.mlp, MLP)

        num_weights = sum([p.numel() for p in self.mlp.parameters()])
        assert num_weights == 1236

    """
    def test_cpu_forward(self, mlp):
        # [sequence length, micro batch size, hidden size]
        hidden_states = torch.ones((32, 2, mlp.config.hidden_size))
        output, output_bias = mlp(hidden_states)
        assert output.shape[0] == 32
        assert output.shape[1] == 2
        assert output.shape[2] == mlp.config.hidden_size
        assert output_bias.shape[0] == mlp.config.hidden_size
        assert output.dtype == torch.float32
    """

    @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
    def test_gpu_forward(self):
        mlp = self.mlp
        mlp.cuda()
        # [sequence length, batch size, hidden size]
        hidden_states = torch.ones((32, 2, mlp.config.hidden_size))
        hidden_states = hidden_states.cuda()
        output, output_bias = mlp(hidden_states)
        assert output.shape[0] == 32
        assert output.shape[1] == 2
        assert output.shape[2] == mlp.config.hidden_size
        assert output_bias.shape[0] == mlp.config.hidden_size
        assert output.dtype == torch.float32
        assert output.device.type == 'cuda'
        assert output_bias.device.type == 'cuda'