tokenizer.py 15.3 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Megatron tokenizers."""
4
5
6
7
8

from abc import ABC
from abc import abstractmethod

from .bert_tokenization import FullTokenizer as FullBertTokenizer
Mohammad's avatar
Mohammad committed
9
from .gpt2_tokenization import GPT2Tokenizer
10
11


Mohammad's avatar
Mohammad committed
12
def build_tokenizer(args):
Mohammad's avatar
Mohammad committed
13
14
    """Initialize tokenizer."""
    if args.rank == 0:
Mohammad's avatar
Mohammad committed
15
        print('> building {} tokenizer ...'.format(args.tokenizer_type),
Mohammad's avatar
Mohammad committed
16
              flush=True)
17
18

    # Select and instantiate the tokenizer.
Mohammad's avatar
Mohammad committed
19
    if args.tokenizer_type == 'BertWordPieceLowerCase':
liangjing's avatar
v1  
liangjing committed
20
        assert args.vocab_file is not None
Mohammad's avatar
Mohammad committed
21
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
22
23
                                            lower_case=True,
                                            vocab_extra_ids=args.vocab_extra_ids)
Raul Puri's avatar
Raul Puri committed
24
    elif args.tokenizer_type == 'BertWordPieceCase':
liangjing's avatar
v1  
liangjing committed
25
        assert args.vocab_file is not None
Raul Puri's avatar
Raul Puri committed
26
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
27
28
                                            lower_case=False,
                                            vocab_extra_ids=args.vocab_extra_ids)
Mohammad's avatar
Mohammad committed
29
    elif args.tokenizer_type == 'GPT2BPETokenizer':
liangjing's avatar
v1  
liangjing committed
30
        assert args.vocab_file is not None
Mohammad's avatar
Mohammad committed
31
32
        assert args.merge_file is not None
        tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
33
34
35
    elif args.tokenizer_type == 'SentencePieceTokenizer':
        assert args.tokenizer_model is not None
        tokenizer = _SentencePieceTokenizer(args.tokenizer_model, vocab_extra_ids=args.vocab_extra_ids)
36
37
38
    elif args.tokenizer_type == 'GPTSentencePieceTokenizer':
        assert args.tokenizer_model is not None
        tokenizer = _GPTSentencePieceTokenizer(args.tokenizer_model)
liangjing's avatar
v1  
liangjing committed
39
40
41
    elif args.tokenizer_type == 'NullTokenizer':
        assert args.vocab_size is not None
        tokenizer = _NullTokenizer(args.vocab_size)
42
43
    else:
        raise NotImplementedError('{} tokenizer is not '
Mohammad's avatar
Mohammad committed
44
                                  'implemented.'.format(args.tokenizer_type))
liangjing's avatar
v1  
liangjing committed
45
    
46
    # Add vocab size.
Mohammad's avatar
Mohammad committed
47
48
    args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size,
                                                      args)
Mohammad's avatar
Mohammad committed
49
50
51
52

    return tokenizer


Mohammad's avatar
Mohammad committed
53
def _vocab_size_with_padding(orig_vocab_size, args):
Mohammad's avatar
Mohammad committed
54
55
56
57
58
    """Pad vocab size so it is divisible by model parallel size and
    still having GPU friendly size."""

    after = orig_vocab_size
    multiple = args.make_vocab_size_divisible_by * \
59
        args.tensor_model_parallel_size
Mohammad's avatar
Mohammad committed
60
61
62
63
64
65
66
    while (after % multiple) != 0:
        after += 1
    if args.rank == 0:
        print(' > padded vocab (size: {}) with {} dummy tokens '
              '(new size: {})'.format(
                  orig_vocab_size, after - orig_vocab_size, after), flush=True)
    return after
67
68
69
70
71
72
73
74
75
76
77
78
79
80


class AbstractTokenizer(ABC):
    """Abstract class for tokenizer."""

    def __init__(self, name):
        self.name = name
        super().__init__()

    @property
    @abstractmethod
    def vocab_size(self):
        pass

81
82
83
84
85
86
87
88
89
90
91
92
    @property
    @abstractmethod
    def vocab(self):
        """Dictionary from vocab text token to id token."""
        pass

    @property
    @abstractmethod
    def inv_vocab(self):
        """Dictionary from vocab id token to text token."""
        pass

93
94
95
96
    @abstractmethod
    def tokenize(self, text):
        pass

97
98
99
100
    def detokenize(self, token_ids):
        raise NotImplementedError('detokenizer is not implemented for {} '
                                  'tokenizer'.format(self.name))

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    @property
    def cls(self):
        raise NotImplementedError('CLS is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def sep(self):
        raise NotImplementedError('SEP is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def pad(self):
        raise NotImplementedError('PAD is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def eod(self):
        raise NotImplementedError('EOD is not provided for {} '
                                  'tokenizer'.format(self.name))

121
122
123
124
125
    @property
    def mask(self):
        raise NotImplementedError('MASK is not provided for {} '
                                  'tokenizer'.format(self.name))

126
127
128
129

class _BertWordPieceTokenizer(AbstractTokenizer):
    """Original BERT wordpiece tokenizer."""

130
    def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
131
132
133
134
135
136
137
138
139
        if lower_case:
            name = 'BERT Lower Case'
        else:
            name = 'BERT Upper Case'
        super().__init__(name)
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.pad_id = self.tokenizer.vocab['[PAD]']
Neel Kant's avatar
Neel Kant committed
140
        self.mask_id = self.tokenizer.vocab['[MASK]']
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        self._additional_special_tokens = []

        # (dsachan) Add BOS and EOS tokens
        SPECIAL_TOKENS = {'eos_token': '[EOS]',
                          'bos_token': '[BOS]'}
        self._bos_token = '[BOS]'
        self.add_token(self._bos_token)
        self._bos_token_id = self.vocab.get(self._bos_token)

        self._eos_token = '[EOS]'
        self.add_token(self._eos_token)
        self._eos_token_id = self.vocab.get(self._eos_token)

        # (dsachan) Add additional special tokens
        # These can be used as sentinel tokens in T5 model inputs
        additional_special_tokens = []
        additional_special_tokens.extend(
            ["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
        self.add_additional_special_tokens(additional_special_tokens)

    def add_token(self, token):
        if token not in self.vocab:
            self.inv_vocab[self.vocab_size] = token
            # self.vocab_size comes from len(vocab)
            # and it will increase as we add elements
            self.vocab[token] = self.vocab_size

    def add_additional_special_tokens(self, tokens_list):
        setattr(self, "additional_special_tokens", tokens_list)
        for value in tokens_list:
            self.add_token(value)
172
173
174
175
176

    @property
    def vocab_size(self):
        return self.tokenizer.vocab_size()

177
178
179
180
181
182
183
184
    @property
    def vocab(self):
        return self.tokenizer.vocab

    @property
    def inv_vocab(self):
        return self.tokenizer.inv_vocab

185
186
187
188
    def tokenize(self, text):
        text_tokens = self.tokenizer.tokenize(text)
        return self.tokenizer.convert_tokens_to_ids(text_tokens)

189
190
191
192
    def decode(self, ids):
        tokens = self.tokenizer.convert_ids_to_tokens(ids)
        return self.tokenizer.convert_tokens_to_string(tokens)

193
194
195
196
    def decode_token_ids(self, token_ids):
        tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
        exclude_list = ['[PAD]', '[CLS]']
        non_pads = [t for t in tokens if t not in exclude_list]
197
198
199
200
201
202
203
204
205

        result = ""
        for s in non_pads:
            if s.startswith("##"):
                result += s[2:]
            else:
                result += " " + s

        return result
206

207
208
209
210
211
212
213
214
215
216
217
    @property
    def cls(self):
        return self.cls_id

    @property
    def sep(self):
        return self.sep_id

    @property
    def pad(self):
        return self.pad_id
Mohammad's avatar
Mohammad committed
218

219
220
221
    @property
    def mask(self):
        return self.mask_id
Mohammad's avatar
Mohammad committed
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    @property
    def bos_token(self):
        """ Beginning of sentence token id """
        return self._bos_token

    @property
    def eos_token(self):
        """ End of sentence token id """
        return self._eos_token

    @property
    def additional_special_tokens(self):
        """ All the additional special tokens you may want to use (list of strings)."""
        return self._additional_special_tokens

    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary."""
        return self._bos_token_id

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary."""
        return self._eos_token_id

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers)."""
        return [self.vocab.get(token) for token in self._additional_special_tokens]

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

Neel Kant's avatar
Neel Kant committed
257

Mohammad's avatar
Mohammad committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
class _GPT2BPETokenizer(AbstractTokenizer):
    """Original GPT2 BPE tokenizer."""

    def __init__(self, vocab_file, merge_file):
        name = 'GPT2 BPE'
        super().__init__(name)

        self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace',
                                       special_tokens=[], max_len=None)
        self.eod_id = self.tokenizer.encoder['<|endoftext|>']

    @property
    def vocab_size(self):
        return len(self.tokenizer.encoder)

273
274
275
276
277
278
279
280
    @property
    def vocab(self):
        return self.tokenizer.encoder

    @property
    def inv_vocab(self):
        return self.tokenizer.decoder

Mohammad's avatar
Mohammad committed
281
282
283
    def tokenize(self, text):
        return self.tokenizer.encode(text)

284
285
286
    def detokenize(self, token_ids):
        return self.tokenizer.decode(token_ids)

Mohammad's avatar
Mohammad committed
287
288
289
    @property
    def eod(self):
        return self.eod_id
290
291
292
293
294
295
296
297
298


class _SentencePieceTokenizer(AbstractTokenizer):
    """SentencePieceTokenizer-Megatron wrapper"""

    def __init__(self, model_file, vocab_extra_ids=0):
        name = 'SentencePieceTokenizer'
        super().__init__(name)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
299
        import sentencepiece
300
        self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
301
302
        self._initalize(vocab_extra_ids)

303
    def _populate_vocab(self):
304
305
306
        self._vocab = {}
        self._inv_vocab = {}

307
308
309
310
311
312
313
        for i in range(len(self.tokenizer)):
            t = self.tokenizer.id_to_piece(i)
            self._inv_vocab[i] = t
            self._vocab[t] = i

    def _initalize(self, vocab_extra_ids):
        self._populate_vocab()
314
315
316
317
318
319
320
321
322
323
324
325
326
        self._special_tokens = {}
        self._inv_special_tokens = {}

        self._t5_tokens = []

        def _add_special_token(t):
            if t not in self._vocab:
                next_id = len(self._vocab)
                self._vocab[t] = next_id
                self._inv_vocab[next_id] = t
            self._special_tokens[t] = self._vocab[t]
            self._inv_special_tokens[self._vocab[t]] = t

Vijay Korthikanti's avatar
Vijay Korthikanti committed
327
328
329
330
331
332
333
334
        _add_special_token('<CLS>')
        self._cls_id = self._vocab['<CLS>']
        _add_special_token('<SEP>')
        self._sep_id = self._vocab['<SEP>']
        _add_special_token('<EOD>')
        self._eod_id = self._vocab['<EOD>']
        _add_special_token('<MASK>')
        self._mask_id = self._vocab['<MASK>']
335

336
        pad_id = self.tokenizer.pad_id()
337
        try:
338
            pad_token = self.tokenizer.id_to_piece(pad_id)
339
340
        except IndexError:
            pad_token = '<PAD>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
341
342
        _add_special_token(pad_token)
        self._pad_id = self._vocab[pad_token]
343

344
        bos_id = self.tokenizer.bos_id()
345
        try:
346
            bos_token = self.tokenizer.id_to_piece(bos_id)
347
348
        except IndexError:
            bos_token = '<BOS>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
350
        _add_special_token(bos_token)
        self._bos_id = self._vocab[bos_token]
351

352
        eos_id = self.tokenizer.eos_id()
353
        try:
354
            eos_token = self.tokenizer.id_to_piece(eos_id)
355
356
        except IndexError:
            eos_token = '<EOS>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
357
358
        _add_special_token(eos_token)
        self._eos_id = self._vocab[eos_token]
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

        for i in range(vocab_extra_ids):
            t = "<extra_id_{}>".format(i)
            _add_special_token(t)
            self._t5_tokens += [t]

    @property
    def vocab_size(self):
        return len(self._vocab)

    @property
    def vocab(self):
        return self._vocab

    @property
    def inv_vocab(self):
        return self._inv_vocab

377
378
379
380
381
382
383
384
    @property
    def decoder(self):
        return self._inv_vocab

    @property
    def encoder(self):
        return self._vocab

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    # From:
    # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
    def tokenize(self, text):
        ids = []
        idx = 0

        while 1:
            indices = {}
            for token in self._special_tokens:
                try:
                    indices[token] = text[idx:].index(token)
                except ValueError:
                    continue
            if len(indices) == 0:
                break

            next_token = min(indices, key=indices.get)
            next_idx = idx + indices[next_token]

404
            ids.extend(self.tokenizer.encode_as_ids(text[idx:next_idx]))
405
406
407
            ids.append(self._special_tokens[next_token])
            idx = next_idx + len(next_token)

408
        ids.extend(self.tokenizer.encode_as_ids(text[idx:]))
409
410
411
412
413
414
415
416
417
418
        return ids

    # From:
    # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
    def detokenize(self, ids):
        text = ""
        last_i = 0

        for i, id in enumerate(ids):
            if id in self._inv_special_tokens:
419
                text += self.tokenizer.decode_ids(ids[last_i:i]) + " "
420
421
422
                text += self._inv_special_tokens[id] + " "
                last_i = i + 1

423
424
        text += self.tokenizer.decode_ids(ids[last_i:])
        return text
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

    @property
    def cls(self):
        return self._cls_id

    @property
    def sep(self):
        return self._sep_id

    @property
    def pad(self):
        return self._pad_id

    @property
    def bos_token_id(self):
        return self._bos_id

    @property
    def bos(self):
        return self._bos_id

    @property
    def eod(self):
        return self._eod_id

    @property
    def eos_token_id(self):
        return self._eos_id

    @property
    def eos(self):
        return self._eos_id

    @property
    def mask(self):
        return self._mask_id

    @property
    def additional_special_tokens_ids(self):
        return [self.vocab[k] for k in self._t5_tokens]

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
class _GPTSentencePieceTokenizer(_SentencePieceTokenizer):
    """SentencePieceTokenizer-Megatron wrapper"""

    def __init__(self, model_file,):
        super().__init__(model_file, vocab_extra_ids=0)

    def _initalize(self, vocab_extra_ids):
        self._populate_vocab()

        self._pad_id = self.tokenizer.pad_id()
        self._bos_id = self.tokenizer.bos_id()
        self._eos_id = self.tokenizer.eos_id()

    def tokenize(self, text):
        return self.tokenizer.encode_as_ids(text)

    def detokenize(self, ids):
        return self.tokenizer.decode_ids(ids)

    @property
    def cls(self):
        return -1

    @property
    def sep(self):
        return -1

    @property
    def mask(self):
        return -1

    @property
    def eod(self):
        return self._eos_id

    @property
    def additional_special_tokens_ids(self):
        return None
liangjing's avatar
v1  
liangjing committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

class _NullTokenizer:
    def __init__(self, vocab_size):
        vocab_size = int(vocab_size)
        self._eos_id = vocab_size
        self.vocab_size = vocab_size+1

    def tokenize(self, text):
        return [int(x) for x in text.split(' ')]

    def detokenize(self, ids):
        text = [str(x) for x in ids]
        return ' '.join(text)

    @property
    def cls(self):
        return -1

    @property
    def sep(self):
        return -1

    @property
    def mask(self):
        return -1

    @property
    def eod(self):
        return self._eos_id

    @property
    def additional_special_tokens_ids(self):
        return None