dataset_utils.py 30.7 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, and NVIDIA.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16


17
18
19
20
# Most of the code here has been copied from:
#   https://github.com/google-research/albert/blob/master/create_pretraining_data.py
# with some modifications.

mohammad's avatar
mohammad committed
21
import math
22
import os
23
import time
24
import collections
Neel Kant's avatar
Neel Kant committed
25

26
import numpy as np
27
28
29
30
31
32
import torch

from megatron import (
    get_args,
    print_rank_0
)
33
from megatron.core import mpu
mohammad's avatar
mohammad committed
34
from megatron.data.blendable_dataset import BlendableDataset
35
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
36

37
DSET_TYPE_BERT = 'standard_bert'
38
DSET_TYPE_ICT = 'ict'
39
DSET_TYPE_T5  = 't5'
liangjing's avatar
v1  
liangjing committed
40
DSET_TYPE_MULTIMODAL = 'multimodal'
41

liangjing's avatar
v1  
liangjing committed
42
DSET_TYPES = [DSET_TYPE_BERT, DSET_TYPE_ICT, DSET_TYPE_T5, DSET_TYPE_MULTIMODAL]
43

44

mohammad's avatar
mohammad committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def get_datasets_weights_and_num_samples(data_prefix,
                                         train_valid_test_num_samples):

    # The data prefix should be in the format of:
    #   weight-1, data-prefix-1, weight-2, data-prefix-2, ..
    assert len(data_prefix) % 2 == 0
    num_datasets = len(data_prefix) // 2
    weights = [0]*num_datasets
    prefixes = [0]*num_datasets
    for i in range(num_datasets):
        weights[i] = float(data_prefix[2*i])
        prefixes[i] = (data_prefix[2*i+1]).strip()
    # Normalize weights
    weight_sum = 0.0
    for weight in weights:
        weight_sum += weight
    assert weight_sum > 0.0
    weights = [weight / weight_sum for weight in weights]

    # Add 0.5% (the 1.005 factor) so in case the bleding dataset does
    # not uniformly distribute the number of samples, we still have
    # samples left to feed to the network.
67
68
69
70
71
72
73
    if isinstance(train_valid_test_num_samples, list):
        datasets_train_valid_test_num_samples = []
        for weight in weights:
            datasets_train_valid_test_num_samples.append(
                [int(math.ceil(val * weight * 1.005))
                for val in train_valid_test_num_samples])
    else:
74
75
        # Used when separate dataset files are provided for train,
        # valid and test
76
77
78
        datasets_train_valid_test_num_samples = [
            int(math.ceil(train_valid_test_num_samples * weight * 1.005))
            for weight in weights]
mohammad's avatar
mohammad committed
79
80
81
82

    return prefixes, weights, datasets_train_valid_test_num_samples


83
84
85
86
87
88
def compile_helper():
    """Compile helper function ar runtime. Make sure this
    is invoked on a single process."""
    import os
    import subprocess
    path = os.path.abspath(os.path.dirname(__file__))
89
90
91
92
93
    ret = subprocess.run(['make', '-C', path])
    if ret.returncode != 0:
        print("Making C++ dataset helpers module failed, exiting.")
        import sys
        sys.exit(1)
94
95


96
def get_a_and_b_segments(sample, np_rng):
97
98
99
100
101
102
103
104
105
106
107
    """Divide sample into a and b segments."""

    # Number of sentences in the sample.
    n_sentences = len(sample)
    # Make sure we always have two sentences.
    assert n_sentences > 1, 'make sure each sample has at least two sentences.'

    # First part:
    # `a_end` is how many sentences go into the `A`.
    a_end = 1
    if n_sentences >= 3:
108
109
        # Note that randin in numpy is exclusive.
        a_end = np_rng.randint(1, n_sentences)
110
111
112
113
114
115
116
117
118
119
120
    tokens_a = []
    for j in range(a_end):
        tokens_a.extend(sample[j])

    # Second part:
    tokens_b = []
    for j in range(a_end, n_sentences):
        tokens_b.extend(sample[j])

    # Random next:
    is_next_random = False
121
    if np_rng.random() < 0.5:
122
123
124
125
126
127
        is_next_random = True
        tokens_a, tokens_b = tokens_b, tokens_a

    return tokens_a, tokens_b, is_next_random


128
def truncate_segments(tokens_a, tokens_b, len_a, len_b, max_num_tokens, np_rng):
129
    """Truncates a pair of sequences to a maximum sequence length."""
130
    #print(len_a, len_b, max_num_tokens)
131
    assert len_a > 0
132
133
134
    if len_a + len_b <= max_num_tokens:
        return False
    while len_a + len_b > max_num_tokens:
135
136
137
138
139
140
        if len_a > len_b:
            len_a -= 1
            tokens = tokens_a
        else:
            len_b -= 1
            tokens = tokens_b
141
        if np_rng.random() < 0.5:
142
143
144
            del tokens[0]
        else:
            tokens.pop()
145
    return True
146

Neel Kant's avatar
Neel Kant committed
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def create_tokens_and_tokentypes(tokens_a, tokens_b, cls_id, sep_id):
    """Merge segments A and B, add [CLS] and [SEP] and build tokentypes."""

    tokens = []
    tokentypes = []
    # [CLS].
    tokens.append(cls_id)
    tokentypes.append(0)
    # Segment A.
    for token in tokens_a:
        tokens.append(token)
        tokentypes.append(0)
    # [SEP].
    tokens.append(sep_id)
    tokentypes.append(0)
    # Segment B.
    for token in tokens_b:
        tokens.append(token)
        tokentypes.append(1)
167
168
169
170
    if tokens_b:
        # [SEP].
        tokens.append(sep_id)
        tokentypes.append(1)
171

172
173
174
175
176
177
178
179
    return tokens, tokentypes


MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])


def is_start_piece(piece):
180
181
182
183
184
185
    """Check if the current word piece is the starting piece (BERT)."""
    # When a word has been split into
    # WordPieces, the first token does not have any marker and any subsequence
    # tokens are prefixed with ##. So whenever we see the ## token, we
    # append it to the previous set of word indexes.
    return not piece.startswith("##")
186
187
188
189
190
191
192


def create_masked_lm_predictions(tokens,
                                 vocab_id_list, vocab_id_to_token_dict,
                                 masked_lm_prob,
                                 cls_id, sep_id, mask_id,
                                 max_predictions_per_seq,
193
                                 np_rng,
194
195
196
                                 max_ngrams=3,
                                 do_whole_word_mask=True,
                                 favor_longer_ngram=False,
197
198
199
                                 do_permutation=False,
                                 geometric_dist=False,
                                 masking_style="bert"):
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    """Creates the predictions for the masked LM objective.
    Note: Tokens here are vocab ids and not text tokens."""

    cand_indexes = []
    # Note(mingdachen): We create a list for recording if the piece is
    # the starting piece of current token, where 1 means true, so that
    # on-the-fly whole word masking is possible.
    token_boundary = [0] * len(tokens)

    for (i, token) in enumerate(tokens):
        if token == cls_id or token == sep_id:
            token_boundary[i] = 1
            continue
        # Whole Word Masking means that if we mask all of the wordpieces
        # corresponding to an original word.
        #
        # Note that Whole Word Masking does *not* change the training code
        # at all -- we still predict each WordPiece independently, softmaxed
        # over the entire vocabulary.
        if (do_whole_word_mask and len(cand_indexes) >= 1 and
                not is_start_piece(vocab_id_to_token_dict[token])):
            cand_indexes[-1].append(i)
222
        else:
223
224
225
            cand_indexes.append([i])
            if is_start_piece(vocab_id_to_token_dict[token]):
                token_boundary[i] = 1
226

227
    output_tokens = list(tokens)
228

229
230
    masked_lm_positions = []
    masked_lm_labels = []
231

232
233
234
    if masked_lm_prob == 0:
        return (output_tokens, masked_lm_positions,
                masked_lm_labels, token_boundary)
235

236
237
238
239
    num_to_predict = min(max_predictions_per_seq,
                         max(1, int(round(len(tokens) * masked_lm_prob))))

    ngrams = np.arange(1, max_ngrams + 1, dtype=np.int64)
240
241
242
243
244
245
246
    if not geometric_dist:
        # Note(mingdachen):
        # By default, we set the probilities to favor shorter ngram sequences.
        pvals = 1. / np.arange(1, max_ngrams + 1)
        pvals /= pvals.sum(keepdims=True)
        if favor_longer_ngram:
            pvals = pvals[::-1]
247

248
249
250
251
252
253
    ngram_indexes = []
    for idx in range(len(cand_indexes)):
        ngram_index = []
        for n in ngrams:
            ngram_index.append(cand_indexes[idx:idx + n])
        ngram_indexes.append(ngram_index)
254

255
    np_rng.shuffle(ngram_indexes)
256

257
    (masked_lms, masked_spans) = ([], [])
258
259
260
261
262
263
264
265
266
267
268
269
270
    covered_indexes = set()
    for cand_index_set in ngram_indexes:
        if len(masked_lms) >= num_to_predict:
            break
        if not cand_index_set:
            continue
        # Note(mingdachen):
        # Skip current piece if they are covered in lm masking or previous ngrams.
        for index_set in cand_index_set[0]:
            for index in index_set:
                if index in covered_indexes:
                    continue

271
272
273
274
275
276
277
278
279
280
        if not geometric_dist:
            n = np_rng.choice(ngrams[:len(cand_index_set)],
                              p=pvals[:len(cand_index_set)] /
                              pvals[:len(cand_index_set)].sum(keepdims=True))
        else:
            # Sampling "n" from the geometric distribution and clipping it to
            # the max_ngrams. Using p=0.2 default from the SpanBERT paper
            # https://arxiv.org/pdf/1907.10529.pdf (Sec 3.1)
            n = min(np_rng.geometric(0.2), max_ngrams)

281
282
        index_set = sum(cand_index_set[n - 1], [])
        n -= 1
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        # Note(mingdachen):
        # Repeatedly looking for a candidate that does not exceed the
        # maximum number of predictions by trying shorter ngrams.
        while len(masked_lms) + len(index_set) > num_to_predict:
            if n == 0:
                break
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1
        # If adding a whole-word mask would exceed the maximum number of
        # predictions, then just skip this candidate.
        if len(masked_lms) + len(index_set) > num_to_predict:
            continue
        is_any_index_covered = False
        for index in index_set:
            if index in covered_indexes:
                is_any_index_covered = True
                break
        if is_any_index_covered:
            continue
        for index in index_set:
            covered_indexes.add(index)
            masked_token = None
305
306
307
308
309
310
311
312
313
314
315
316
            if masking_style == "bert":
                # 80% of the time, replace with [MASK]
                if np_rng.random() < 0.8:
                    masked_token = mask_id
                else:
                    # 10% of the time, keep original
                    if np_rng.random() < 0.5:
                        masked_token = tokens[index]
                    # 10% of the time, replace with random word
                    else:
                        masked_token = vocab_id_list[np_rng.randint(0, len(vocab_id_list))]
            elif masking_style == "t5":
317
318
                masked_token = mask_id
            else:
319
                raise ValueError("invalid value of masking style")
320
321
322
323

            output_tokens[index] = masked_token
            masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))

324
325
326
327
328
        masked_spans.append(MaskedLmInstance(
            index=index_set,
            label=[tokens[index] for index in index_set]))

    assert len(masked_lms) <= num_to_predict
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    np_rng.shuffle(ngram_indexes)

    select_indexes = set()
    if do_permutation:
        for cand_index_set in ngram_indexes:
            if len(select_indexes) >= num_to_predict:
                break
            if not cand_index_set:
                continue
            # Note(mingdachen):
            # Skip current piece if they are covered in lm masking or previous ngrams.
            for index_set in cand_index_set[0]:
                for index in index_set:
                    if index in covered_indexes or index in select_indexes:
                        continue

            n = np.random.choice(ngrams[:len(cand_index_set)],
                                 p=pvals[:len(cand_index_set)] /
                                 pvals[:len(cand_index_set)].sum(keepdims=True))
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1

            while len(select_indexes) + len(index_set) > num_to_predict:
                if n == 0:
                    break
                index_set = sum(cand_index_set[n - 1], [])
                n -= 1
            # If adding a whole-word mask would exceed the maximum number of
            # predictions, then just skip this candidate.
            if len(select_indexes) + len(index_set) > num_to_predict:
                continue
            is_any_index_covered = False
            for index in index_set:
                if index in covered_indexes or index in select_indexes:
                    is_any_index_covered = True
                    break
            if is_any_index_covered:
                continue
            for index in index_set:
                select_indexes.add(index)
        assert len(select_indexes) <= num_to_predict

        select_indexes = sorted(select_indexes)
        permute_indexes = list(select_indexes)
        np_rng.shuffle(permute_indexes)
        orig_token = list(output_tokens)

        for src_i, tgt_i in zip(select_indexes, permute_indexes):
            output_tokens[src_i] = orig_token[tgt_i]
            masked_lms.append(MaskedLmInstance(index=src_i, label=orig_token[src_i]))

    masked_lms = sorted(masked_lms, key=lambda x: x.index)
381
382
    # Sort the spans by the index of the first span
    masked_spans = sorted(masked_spans, key=lambda x: x.index[0])
383
384
385
386

    for p in masked_lms:
        masked_lm_positions.append(p.index)
        masked_lm_labels.append(p.label)
387
    return (output_tokens, masked_lm_positions, masked_lm_labels, token_boundary, masked_spans)
388
389
390
391
392
393
394
395
396
397
398


def pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                             masked_labels, pad_id, max_seq_length):
    """Pad sequences and convert them to numpy."""

    # Some checks.
    num_tokens = len(tokens)
    padding_length = max_seq_length - num_tokens
    assert padding_length >= 0
    assert len(tokentypes) == num_tokens
399
    assert len(masked_positions) == len(masked_labels)
400
401

    # Tokens and token types.
402
    filler = [pad_id] * padding_length
403
404
405
406
    tokens_np = np.array(tokens + filler, dtype=np.int64)
    tokentypes_np = np.array(tokentypes + filler, dtype=np.int64)

    # Padding mask.
407
    padding_mask_np = np.array([1] * num_tokens + [0] * padding_length,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
408
                               dtype=np.int64)
409
410
411
412
413
414
415
416
417
418
419

    # Lables and loss mask.
    labels = [-1] * max_seq_length
    loss_mask = [0] * max_seq_length
    for i in range(len(masked_positions)):
        assert masked_positions[i] < num_tokens
        labels[masked_positions[i]] = masked_labels[i]
        loss_mask[masked_positions[i]] = 1
    labels_np = np.array(labels, dtype=np.int64)
    loss_mask_np = np.array(loss_mask, dtype=np.int64)

420
    return tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np
421
422


liangjing's avatar
v1  
liangjing committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def build_train_valid_test_datasets_with_prefixes(data_impl,
                                                  train_valid_test_num_samples,
                                                  max_seq_length,
                                                  seed,
                                                  skip_warmup,
                                                  train_data_prefix=None,
                                                  valid_data_prefix=None,
                                                  test_data_prefix=None,
                                                  binary_head=False,
                                                  max_seq_length_dec=None,
                                                  dataset_type='standard_bert'):
    print_rank_0("Separate data paths provided for train, valid & test.")

    train_dataset, valid_dataset, test_dataset = None, None, None
    # Single dataset.
    if train_data_prefix is not None:
        train_dataset = build_dataset("train", train_data_prefix, data_impl,
                                      train_valid_test_num_samples[0],
                                      max_seq_length, seed, skip_warmup,
                                      binary_head, max_seq_length_dec,
                                      dataset_type=dataset_type)

    if valid_data_prefix is not None:
        valid_dataset = build_dataset("valid", valid_data_prefix, data_impl,
                                      train_valid_test_num_samples[1],
                                      max_seq_length, seed, False,
                                      binary_head, max_seq_length_dec,
                                      dataset_type=dataset_type)

    if test_data_prefix is not None:
        test_dataset = build_dataset("test", test_data_prefix, data_impl,
                                     train_valid_test_num_samples[2],
                                     max_seq_length, seed, False,
                                     binary_head, max_seq_length_dec,
                                     dataset_type=dataset_type)

    return (train_dataset, valid_dataset, test_dataset)


462
463
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
liangjing's avatar
v1  
liangjing committed
464
                                    max_seq_length, seed,
465
466
                                    skip_warmup, binary_head=False,
                                    max_seq_length_dec=None,
467
468
                                    dataset_type='standard_bert'):

mohammad's avatar
mohammad committed
469
470
471
472
    if len(data_prefix) == 1:
        return _build_train_valid_test_datasets(data_prefix[0],
                                                data_impl, splits_string,
                                                train_valid_test_num_samples,
liangjing's avatar
v1  
liangjing committed
473
                                                max_seq_length, seed,
mohammad's avatar
mohammad committed
474
                                                skip_warmup,
475
                                                binary_head,
476
                                                max_seq_length_dec,
mohammad's avatar
mohammad committed
477
478
479
480
481
482
                                                dataset_type=dataset_type)
    # Blending dataset.
    # Parse the values.
    output = get_datasets_weights_and_num_samples(data_prefix,
                                                  train_valid_test_num_samples)
    prefixes, weights, datasets_train_valid_test_num_samples = output
liangjing's avatar
v1  
liangjing committed
483
484
485
486
    train_num_samples, valid_num_samples, test_num_samples = map(
        sum,
        zip(*datasets_train_valid_test_num_samples)
    )
mohammad's avatar
mohammad committed
487
488
489
490
491
492
493
494
495

    # Build individual datasets.
    train_datasets = []
    valid_datasets = []
    test_datasets = []
    for i in range(len(prefixes)):
        train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
            prefixes[i], data_impl, splits_string,
            datasets_train_valid_test_num_samples[i],
liangjing's avatar
v1  
liangjing committed
496
497
            max_seq_length, seed, skip_warmup, binary_head,
            max_seq_length_dec, dataset_type=dataset_type)
498
499
500
501
502
503
504
        if train_ds:
            train_datasets.append(train_ds)
        if valid_ds:
            valid_datasets.append(valid_ds)
        if test_ds:
            test_datasets.append(test_ds)

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
505
    # Blend.
506
507
    blending_train_dataset = None
    if train_datasets:
liangjing's avatar
v1  
liangjing committed
508
        blending_train_dataset = BlendableDataset(train_datasets, weights, train_num_samples)
509
510
    blending_valid_dataset = None
    if valid_datasets:
liangjing's avatar
v1  
liangjing committed
511
        blending_valid_dataset = BlendableDataset(valid_datasets, weights, valid_num_samples)
512
513
    blending_test_dataset = None
    if test_datasets:
liangjing's avatar
v1  
liangjing committed
514
        blending_test_dataset = BlendableDataset(test_datasets, weights, test_num_samples)
mohammad's avatar
mohammad committed
515
516
517
518
519
520
521

    return (blending_train_dataset, blending_valid_dataset,
            blending_test_dataset)


def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
liangjing's avatar
v1  
liangjing committed
522
                                     max_seq_length, seed,
523
524
                                     skip_warmup, binary_head,
                                     max_seq_length_dec,
mohammad's avatar
mohammad committed
525
                                     dataset_type='standard_bert'):
526

527
528
529
    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
liangjing's avatar
v1  
liangjing committed
530
                                           dataset_type,
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
                                           skip_warmup)

    # Get start and end indices of train/valid/train into doc-idx
    # Note that doc-idx is desinged to be num-docs + 1 so we can
    # easily iterate over it.
    total_num_of_documents = indexed_dataset.doc_idx.shape[0] - 1
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')

    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
        start_index = indexed_dataset.doc_idx[splits[index]]
        end_index = indexed_dataset.doc_idx[splits[index + 1]]
        print_rank_0('     sentence indices in [{}, {}) total of {} '
                     'sentences'.format(start_index, end_index,
                                        end_index - start_index))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

liangjing's avatar
v1  
liangjing committed
556
    def build_split_dataset(index, name):
557
558
559
560
561
562
563
564
565
566
        dataset = None
        if splits[index + 1] > splits[index]:
            # Get the pointer to the original doc-idx so we can set it later.
            doc_idx_ptr = indexed_dataset.get_doc_idx()
            # Slice the doc-idx
            start_index = splits[index]
            # Add +1 so we can index into the dataset to get the upper bound.
            end_index = splits[index + 1] + 1
            # New doc_idx view.
            indexed_dataset.set_doc_idx(doc_idx_ptr[start_index:end_index])
liangjing's avatar
v1  
liangjing committed
567
568
569
570
571
572

            dataset = build_dataset(
                name, data_prefix, data_impl,
                train_valid_test_num_samples[index], max_seq_length,
                seed, skip_warmup, binary_head, max_seq_length_dec,
                dataset_type, indexed_dataset)
573
574
575
576
577
578
579
580

            # Set the original pointer so dataset remains the main dataset.
            indexed_dataset.set_doc_idx(doc_idx_ptr)
            # Checks.
            assert indexed_dataset.doc_idx[0] == 0
            assert indexed_dataset.doc_idx.shape[0] == \
                (total_num_of_documents + 1)
        return dataset
liangjing's avatar
v1  
liangjing committed
581
582
583
584
    
    train_dataset = build_split_dataset(0, 'train')
    valid_dataset = build_split_dataset(1, 'valid')
    test_dataset = build_split_dataset(2, 'test')
585

586
    return (train_dataset, valid_dataset, test_dataset)
587
588


liangjing's avatar
v1  
liangjing committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
def build_dataset(name, data_prefix, data_impl, max_num_samples,
                  max_seq_length, seed, skip_warmup, binary_head,
                  max_seq_length_dec, dataset_type='standard_bert',
                  indexed_dataset=None):

    from megatron.data.bert_dataset import BertDataset
    from megatron.data.ict_dataset import ICTDataset
    from megatron.data.t5_dataset import T5Dataset
    from megatron.data.multimodal_dataset import MultiModalDataset

    if dataset_type not in DSET_TYPES:
        raise ValueError("Invalid dataset_type: ", dataset_type)

    if indexed_dataset is None:
        indexed_dataset = get_indexed_dataset_(data_prefix,
                                               data_impl,
                                               dataset_type,
                                               skip_warmup)

    kwargs = dict(
        name=name,
        data_prefix=data_prefix,
        num_epochs=None,
        max_num_samples=max_num_samples,
        max_seq_length=max_seq_length,
        seed=seed,
    )

    if dataset_type == DSET_TYPE_ICT:
        args = get_args()

        title_dataset = get_indexed_dataset_(
            args.titles_data_path,
            data_impl,
            dataset_type,
            skip_warmup)

        dataset = ICTDataset(
            block_dataset=indexed_dataset,
            title_dataset=title_dataset,
            query_in_block_prob=args.query_in_block_prob,
            use_one_sent_docs=args.use_one_sent_docs,
            binary_head=binary_head,
            **kwargs
        )
    elif dataset_type == DSET_TYPE_T5:
        args = get_args()
        dataset = T5Dataset(
            indexed_dataset=indexed_dataset,
            masked_lm_prob=args.mask_prob,
            max_seq_length_dec=max_seq_length_dec,
            short_seq_prob=args.short_seq_prob,
            **kwargs
        )
    elif dataset_type == DSET_TYPE_BERT:
        args = get_args()
        dataset = BertDataset(
            indexed_dataset=indexed_dataset,
            masked_lm_prob=args.mask_prob,
            short_seq_prob=args.short_seq_prob,
            binary_head=binary_head,
            **kwargs
        )
    elif dataset_type == DSET_TYPE_MULTIMODAL:
        args = get_args()
        dataset = MultiModalDataset(
            name=name,
            data_prefix=data_prefix,
            indexed_dataset=indexed_dataset,
            num_samples=max_num_samples,
            seq_length=max_seq_length,
            seed=seed,
            img_h=args.img_h,
            img_w=args.img_w,
        )
    else:
        raise NotImplementedError("Dataset type not fully implemented.")

    return dataset


def get_indexed_dataset_(data_prefix, data_impl, dataset_type, skip_warmup):
671
672
673
674

    print_rank_0(' > building dataset index ...')

    start_time = time.time()
liangjing's avatar
v1  
liangjing committed
675
    multimodal = dataset_type == DSET_TYPE_MULTIMODAL
676
677
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
liangjing's avatar
v1  
liangjing committed
678
679
                                           skip_warmup,
                                           multimodal)
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    assert indexed_dataset.sizes.shape[0] == indexed_dataset.doc_idx[-1]
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))

    print_rank_0(' > indexed dataset stats:')
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.doc_idx.shape[0] - 1))
    print_rank_0('    number of sentences: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


def get_train_valid_test_split_(splits_string, size):
    """ Get dataset splits from comma or '/' separated string list."""

    splits = []
    if splits_string.find(',') != -1:
        splits = [float(s) for s in splits_string.split(',')]
    elif splits_string.find('/') != -1:
        splits = [float(s) for s in splits_string.split('/')]
    else:
        splits = [float(splits_string)]
    while len(splits) < 3:
        splits.append(0.)
    splits = splits[:3]
    splits_sum = sum(splits)
    assert splits_sum > 0.0
    splits = [split / splits_sum for split in splits]
    splits_index = [0]
    for index, split in enumerate(splits):
        splits_index.append(splits_index[index] +
                            int(round(split * float(size))))
    diff = splits_index[-1] - size
    for index in range(1, len(splits_index)):
        splits_index[index] -= diff
    assert len(splits_index) == 4
    assert splits_index[-1] == size
    return splits_index

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def get_samples_mapping(indexed_dataset,
                        data_prefix,
                        num_epochs,
                        max_num_samples,
                        max_seq_length,
                        short_seq_prob,
                        seed,
                        name,
                        binary_head):
    """Get a list that maps a sample index to a starting sentence index, end sentence index, and length"""

    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
mshoeybi's avatar
mshoeybi committed
764
        print_rank_0(' > building samples index mapping for {} ...'.format(
765
766
767
768
769
770
771
772
773
774
775
776
777
            name))
        # First compile and then import.
        from megatron.data import helpers
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length,
            short_seq_prob,
            seed,
            verbose,
            2 if binary_head else 1)
mshoeybi's avatar
mshoeybi committed
778
        print_rank_0(' > done building samples index maping')
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elasped time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        samples_mapping.shape[0]))
805

806
    return samples_mapping