commons.py 2.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import numpy
import torch

import mpu


class IdentityLayer(torch.nn.Module):
    def __init__(self, size, scale=1.0):
        super(IdentityLayer, self).__init__()
        self.weight = torch.nn.Parameter(scale * torch.randn(size))
Neel Kant's avatar
Neel Kant committed
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    def forward(self):
        return self.weight


def set_random_seed(seed):
    """Set random seed for reproducability."""
    random.seed(seed)
    numpy.random.seed(seed)
    torch.manual_seed(seed)
    mpu.model_parallel_cuda_manual_seed(seed)


def initialize_distributed(backend='nccl'):
    """Initialize torch.distributed."""
    # Get local rank in case it is provided.
    parser = argparse.ArgumentParser()
    parser.add_argument('--local_rank', type=int, default=None,
                        help='local rank passed from distributed launcher')
    args = parser.parse_args()
    local_rank = args.local_rank

    # Get rank and world size.
    rank = int(os.getenv('RANK', '0'))
    world_size = int(os.getenv("WORLD_SIZE", '1'))

    print('> initializing torch.distributed with local rank: {}, '
          'rank: {}, world size: {}'.format(local_rank, rank, world_size))

    # Set the device id.
    device = rank % torch.cuda.device_count()
    if local_rank is not None:
        device = local_rank
    torch.cuda.set_device(device)

    # Call the init process.
    init_method = 'tcp://'
    master_ip = os.getenv('MASTER_ADDR', 'localhost')
    master_port = os.getenv('MASTER_PORT', '6000')
    init_method += master_ip + ':' + master_port
    torch.distributed.init_process_group(
        backend=backend,
        world_size=world_size,
        rank=rank,
        init_method=init_method)


def print_separator(message):
    torch.distributed.barrier()
    filler_len = (78 - len(message)) // 2
    filler = '-' * filler_len
    string = '\n' + filler + ' {} '.format(message) + filler
    if torch.distributed.get_rank() == 0:
        print(string, flush=True)
    torch.distributed.barrier()