fp16.py 31.5 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Stable version of apex FP16 Optimizer"""
import torch
from torch import nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors

from .loss_scaler import DynamicLossScaler, LossScaler
from .fp16util import model_grads_to_master_grads, master_params_to_model_params, clip_grad_norm

Mohammad's avatar
Mohammad committed
25
26
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
27
28
29

from megatron.module import MegatronModule

Raul Puri's avatar
Raul Puri committed
30
31
32
FLOAT_TYPES = (torch.FloatTensor, torch.cuda.FloatTensor)
HALF_TYPES = (torch.HalfTensor, torch.cuda.HalfTensor)

Neel Kant's avatar
Neel Kant committed
33

Raul Puri's avatar
Raul Puri committed
34
35
36
37
def conversion_helper(val, conversion):
    """Apply conversion to val. Recursively apply conversion if `val` is a nested tuple/list structure."""
    if not isinstance(val, (tuple, list)):
        return conversion(val)
Neel Kant's avatar
Neel Kant committed
38
    rtn = [conversion_helper(v, conversion) for v in val]
Raul Puri's avatar
Raul Puri committed
39
40
41
42
    if isinstance(val, tuple):
        rtn = tuple(rtn)
    return rtn

Neel Kant's avatar
Neel Kant committed
43

Raul Puri's avatar
Raul Puri committed
44
45
46
47
48
49
50
51
52
53
54
def fp32_to_fp16(val):
    """Convert fp32 `val` to fp16"""
    def half_conversion(val):
        val_typecheck = val
        if isinstance(val_typecheck, (Parameter, Variable)):
            val_typecheck = val.data
        if isinstance(val_typecheck, FLOAT_TYPES):
            val = val.half()
        return val
    return conversion_helper(val, half_conversion)

Neel Kant's avatar
Neel Kant committed
55

Raul Puri's avatar
Raul Puri committed
56
57
58
59
60
61
62
63
64
65
66
def fp16_to_fp32(val):
    """Convert fp16 `val` to fp32"""
    def float_conversion(val):
        val_typecheck = val
        if isinstance(val_typecheck, (Parameter, Variable)):
            val_typecheck = val.data
        if isinstance(val_typecheck, HALF_TYPES):
            val = val.float()
        return val
    return conversion_helper(val, float_conversion)

Neel Kant's avatar
Neel Kant committed
67

68
class FP16_Module(MegatronModule):
Raul Puri's avatar
Raul Puri committed
69
70
71
72
73
74
75
76
77
78
    def __init__(self, module):
        super(FP16_Module, self).__init__()
        self.add_module('module', module.half())

    def forward(self, *inputs, **kwargs):
        return fp16_to_fp32(self.module(*(fp32_to_fp16(inputs)), **kwargs))

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        return self.module.state_dict(destination, prefix, keep_vars)

79
80
81
82
83
    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        return self.module.state_dict_for_save_checkpoint(destination, prefix,
                                                          keep_vars)

Raul Puri's avatar
Raul Puri committed
84
85
86
87
    def load_state_dict(self, state_dict, strict=True):
        self.module.load_state_dict(state_dict, strict=strict)

# TODO:  Update overflow check + downscale to use Carl's fused kernel.
Neel Kant's avatar
Neel Kant committed
88
89


Raul Puri's avatar
Raul Puri committed
90
91
class FP16_Optimizer(object):
    """
Neel Kant's avatar
Neel Kant committed
92
    :class:`FP16_Optimizer` is designed to wrap an existing PyTorch optimizer,
Raul Puri's avatar
Raul Puri committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    and manage static or dynamic loss scaling and master weights in a manner transparent to the user.
    For standard use, only two lines must be changed:  creating the :class:`FP16_Optimizer` instance,
    and changing the call to ``backward``.

    Example::

        model = torch.nn.Linear(D_in, D_out).cuda().half()
        optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
        # Name the FP16_Optimizer instance to replace the existing optimizer
        # (recommended but not required):
        optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
        ...
        # loss.backward() becomes:
        optimizer.backward(loss)
        ...

    Example with dynamic loss scaling::

        ...
        optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
                                   # optional arg to control dynamic loss scaling behavior
                                   # dynamic_loss_args={'scale_window' : 500})
Neel Kant's avatar
Neel Kant committed
115
                                   # Usually, dynamic_loss_args is not necessary.
Raul Puri's avatar
Raul Puri committed
116
117

    Args:
Neel Kant's avatar
Neel Kant committed
118
        init_optimizer (torch.optim.optimizer):  Existing optimizer created with the parameters to optimize.  Internally, :class:`FP16_Optimizer` replaces the passed optimizer's fp16 parameters, if any, with fp32 master parameters copied from the original ones.  :class:`FP16_Optimizer` also stores references to the original fp16 parameters, and updates these fp16 parameters from the master fp32 copy at the end of each :attr:`step`.
Raul Puri's avatar
Raul Puri committed
119
120
121
122
123
        static_loss_scale (float, optional, default=1.0):  Loss scale used internally to scale gradients computed by the model.  Any fp16 gradients will be copied to fp32, then downscaled before being applied to the fp32 master params, so ``static_loss_scale`` should not affect learning rate.
        dynamic_loss_scale (bool, optional, default=False):  Use dynamic loss scaling.  If True, this will override any ``static_loss_scale`` option.
        dynamic_loss_args (dict, optional, default=None):  Dict of kwargs that will be forwarded to the internal :class:`DynamicLossScaler` instance's constructor.  Keys of this dict must match kwargs accepted by :class:`DynamicLossScaler`'s constructor.  If ``dynamic_loss_args`` is unspecified, :class:`DynamicLossScaler`'s defaults will be used.
        verbose (bool, optional, default=True):  By default, FP16_Optimizer's constructor prints out the parameters and parameter groups it is ingesting, as a sanity check.  If this becomes annoying (e.g. for large models), it can be disabled by passing ``verbose=False``.  ``verbose=False`` will not disable printing when the loss scale is readjusted during dynamic loss scaling.

Neel Kant's avatar
Neel Kant committed
124
125
126
    ``init_optimizer`` is expected to have been constructed in the ordinary way.
    It is recommended (although not required) that the newly constructed :class:`FP16_Optimizer` instance be
    named to replace ``init_optimizer``, for two reasons:
Raul Puri's avatar
Raul Puri committed
127
    First, it means that references to the same name
Neel Kant's avatar
Neel Kant committed
128
129
    later in the file will not have to change.
    Second, :class:`FP16_Optimizer` reserves the right (as an implementation detail) to
Raul Puri's avatar
Raul Puri committed
130
131
132
133
    modify ``init_optimizer``.  If you do choose a unique name for the new
    :class:`FP16_Optimizer` instance, you should only work with this new instance,
    because the preexisting optimizer might no longer behave as expected.

Neel Kant's avatar
Neel Kant committed
134
135
136
137
    ``init_optimizer`` may be any Pytorch optimizer.
    It may contain a mixture of fp16 and fp32 parameters organized into any number of
    ``param_groups`` with different hyperparameters.  The :class:`FP16_Optimizer` constructor will
    ingest these ``param_groups`` and remember them.
Raul Puri's avatar
Raul Puri committed
138
139
140

    Calls to ::

Neel Kant's avatar
Neel Kant committed
141
        loss.backward()
Raul Puri's avatar
Raul Puri committed
142
143
144

    must be replaced with ::

Neel Kant's avatar
Neel Kant committed
145
        optimizer.backward(loss)
Raul Puri's avatar
Raul Puri committed
146

Neel Kant's avatar
Neel Kant committed
147
    because :class:`FP16_Optimizer` requires ownership of the backward pass to implement
Raul Puri's avatar
Raul Puri committed
148
149
150
151
152
    loss scaling and copies to master gradients.

    .. note::
        Loss scaling, either static or dynamic, is orthogonal to learning rate, because gradients
        are downscaled before being applied.  This means that adjusting the loss scale, or using
Neel Kant's avatar
Neel Kant committed
153
        dynamic loss scaling, should not require retuning the learning rate or any other
Raul Puri's avatar
Raul Puri committed
154
155
156
157
158
159
160
161
162
        hyperparameters.


    **Advanced options**

    **Closures**:  :class:`FP16_Optimizer` can wrap a Pytorch optimizer that receives a closure.
    See docstring for :attr:`step`.

    **Gradient clipping**:  Use :attr:`clip_master_grads`.
Neel Kant's avatar
Neel Kant committed
163

Raul Puri's avatar
Raul Puri committed
164
165
166
167
168
169
170
171
172
173
    **Multiple losses**:  If your model accumulates gradients from multiple losses,
    this can be made more efficient by supplying ``update_master_grads=False``
    to :attr:`backward`.  See docstring for :attr:`backward`.

    **Manually adjusting loss scale**:  The current loss scale can be retrieved or set via ::

        print(optimizer.loss_scale)
        optimizer.loss_scale = new_loss_scale

    For static loss scaling, manually adjusting the loss scale over time is a reasonable
Neel Kant's avatar
Neel Kant committed
174
    thing to do.  During later epochs, gradients may become smaller, and a
Raul Puri's avatar
Raul Puri committed
175
    higher loss scale may be required, analogous to scheduling the learning rate.  Dynamic loss
Neel Kant's avatar
Neel Kant committed
176
    scaling is more subtle (see :class:`DynamicLossScaler`) and in this case, manually adjusting
Raul Puri's avatar
Raul Puri committed
177
178
179
    the loss scale is not recommended.

    **Multi_GPU training**:  If the wrapped ``init_optimizer`` was created from a model wrapped in
Neel Kant's avatar
Neel Kant committed
180
    Pytorch DistributedDataParallel or Apex DistributedDataParallel, :class:`FP16_Optimizer`
Raul Puri's avatar
Raul Puri committed
181
182
183
    should still work as intended.
    """

Neel Kant's avatar
Neel Kant committed
184
185
186
    def __init__(self,
                 init_optimizer,
                 static_loss_scale=1.0,
Raul Puri's avatar
Raul Puri committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                 dynamic_loss_scale=False,
                 dynamic_loss_args=None,
                 verbose=False):
        if not torch.cuda.is_available:
            raise SystemError("Cannot use fp16 without CUDA.")

        self.verbose = verbose

        self.optimizer = init_optimizer
        # init_state_dict sets up an alternative way to cast per-param state tensors.
        # Stashing here in case https://github.com/pytorch/pytorch/issues/7733 makes it necessary.
        # init_state_dict = init_optimizer.state_dict()

        self.fp16_groups = []
        self.fp32_from_fp16_groups = []
        self.fp32_from_fp32_groups = []
        for i, param_group in enumerate(self.optimizer.param_groups):
            self.maybe_print("FP16_Optimizer processing param group {}:".format(i))
            fp16_params_this_group = []
            fp32_params_this_group = []
            fp32_from_fp16_params_this_group = []
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:
                    if param.type() == 'torch.cuda.HalfTensor':
                        self.maybe_print("FP16_Optimizer received torch.cuda.HalfTensor with {}"
                                         .format(param.size()))
                        fp16_params_this_group.append(param)
                        master_param = param.detach().clone().float()
                        master_param.requires_grad = True
216
217
                        # Copythe model parallel flag.
                        master_param.model_parallel = param.model_parallel
Raul Puri's avatar
Raul Puri committed
218
219
220
221
222
                        param_group['params'][i] = master_param
                        fp32_from_fp16_params_this_group.append(master_param)
                        # Reset existing state dict key to the new master param.
                        # We still need to recast per-param state tensors, if any, to FP32.
                        if param in self.optimizer.state:
Neel Kant's avatar
Neel Kant committed
223
                            self.optimizer.state[master_param] = self.optimizer.state.pop(param)
Raul Puri's avatar
Raul Puri committed
224
225
226
227
228
229
230
                    elif param.type() == 'torch.cuda.FloatTensor':
                        self.maybe_print("FP16_Optimizer received torch.cuda.FloatTensor with {}"
                                         .format(param.size()))
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param
                    else:
                        raise TypeError("Wrapped parameters must be either "
Neel Kant's avatar
Neel Kant committed
231
                                        "torch.cuda.FloatTensor or torch.cuda.HalfTensor. "
Raul Puri's avatar
Raul Puri committed
232
                                        "Received {}".format(param.type()))
Neel Kant's avatar
Neel Kant committed
233

Raul Puri's avatar
Raul Puri committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
            self.fp16_groups.append(fp16_params_this_group)
            self.fp32_from_fp16_groups.append(fp32_from_fp16_params_this_group)
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())
        # alternative way to cast per-param state tensors:
        # self.optimizer.load_state_dict(init_state_dict)

        if dynamic_loss_scale:
            self.dynamic_loss_scale = True
            if dynamic_loss_args is not None:
                self.loss_scaler = DynamicLossScaler(**dynamic_loss_args)
            else:
                self.loss_scaler = DynamicLossScaler()
        else:
            self.dynamic_loss_scale = False
            self.loss_scaler = LossScaler(static_loss_scale)

        self.overflow = False
        self.first_closure_call_this_step = True

        self.clip_grad_norm = clip_grad_norm

    def maybe_print(self, msg):
        if self.verbose:
            print(msg)
Neel Kant's avatar
Neel Kant committed
261

Raul Puri's avatar
Raul Puri committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    def __getstate__(self):
        raise RuntimeError("FP16_Optimizer should be serialized using state_dict().")

    def __setstate__(self, state):
        raise RuntimeError("FP16_Optimizer should be deserialized using load_state_dict().")

    def zero_grad(self, set_grads_to_None=False):
        """
        Zero fp32 and fp16 parameter grads.
        """
        # In principle, only the .grad attributes of the model params need to be zeroed,
        # because gradients are copied into the FP32 master params.  However, we zero
        # all gradients owned by the optimizer, just to be safe:
        for group in self.optimizer.param_groups:
Neel Kant's avatar
Neel Kant committed
276
277
278
279
280
281
282
            for p in group['params']:
                if set_grads_to_None:
                    p.grad = None
                else:
                    if p.grad is not None:
                        p.grad.detach_()
                        p.grad.zero_()
Raul Puri's avatar
Raul Puri committed
283
284
285
286
287
288
289
290

        # Zero fp16 gradients owned by the model:
        for fp16_group in self.fp16_groups:
            for param in fp16_group:
                if set_grads_to_None:
                    param.grad = None
                else:
                    if param.grad is not None:
Neel Kant's avatar
Neel Kant committed
291
                        param.grad.detach_()  # as in torch.optim.optimizer.zero_grad()
Raul Puri's avatar
Raul Puri committed
292
293
294
                        param.grad.zero_()

    def _check_overflow(self):
Neel Kant's avatar
Neel Kant committed
295
        params = []
Raul Puri's avatar
Raul Puri committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        for group in self.fp16_groups:
            for param in group:
                params.append(param)
        for group in self.fp32_from_fp32_groups:
            for param in group:
                params.append(param)
        self.overflow = self.loss_scaler.has_overflow(params)

    def _update_scale(self, has_overflow=False):
        self.loss_scaler.update_scale(has_overflow)

    def _master_params_to_model_params(self):
        for fp16_group, fp32_from_fp16_group in zip(self.fp16_groups, self.fp32_from_fp16_groups):
            master_params_to_model_params(fp16_group, fp32_from_fp16_group)

    def _model_params_to_master_params(self):
        for fp16_group, fp32_from_fp16_group in zip(self.fp16_groups, self.fp32_from_fp16_groups):
            master_params_to_model_params(fp32_from_fp16_group, fp16_group)

Neel Kant's avatar
Neel Kant committed
315
316
317
    # To consider:  Integrate distributed with this wrapper by registering a hook on each variable
    # that does the overflow check, gradient copy + downscale, and fp32
    # allreduce in a different stream.
Raul Puri's avatar
Raul Puri committed
318
319
320
321
322
323
324
    def _model_grads_to_master_grads(self):
        for fp16_group, fp32_from_fp16_group in zip(self.fp16_groups, self.fp32_from_fp16_groups):
            model_grads_to_master_grads(fp16_group, fp32_from_fp16_group)

    def _downscale_master(self):
        if self.loss_scale != 1.0:
            for group in self.optimizer.param_groups:
Mohammad's avatar
Mohammad committed
325
326
327
328
329
330
331
                grads = [p.grad for p in group['params'] if p.grad is not None]
                _overflow_buf = torch.cuda.IntTensor([0])
                multi_tensor_applier(amp_C.multi_tensor_scale,
                                     _overflow_buf,
                                     [grads, grads],
                                     1./self.loss_scale)
      
Raul Puri's avatar
Raul Puri committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    def clip_master_grads(self, max_norm, norm_type=2):
        """
        Clips fp32 master gradients via ``torch.nn.utils.clip_grad_norm``.

        Args:
            max_norm (float or int): max norm of the gradients
            norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
                infinity norm.

        Returns:
            Total norm of the current fp32 gradients (viewed as a single vector).

        .. warning::
            Returns -1 if the most recently computed fp16 gradients overflowed (that is, if ``self.overflow`` is ``True``).
        """
        if not self.overflow:
            fp32_params = []
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    fp32_params.append(param)
            return self.clip_grad_norm(fp32_params, max_norm, norm_type)
        else:
            return -1

    def state_dict(self):
        """
        Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
        This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
        of the contained Pytorch optimizer.
        Example::

            checkpoint = {}
            checkpoint['model'] = model.state_dict()
            checkpoint['optimizer'] = optimizer.state_dict()
            torch.save(checkpoint, "saved.pth")
        """
        state_dict = {}
        state_dict['loss_scaler'] = self.loss_scaler
        state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
        state_dict['overflow'] = self.overflow
        state_dict['first_closure_call_this_step'] = self.first_closure_call_this_step
        state_dict['optimizer_state_dict'] = self.optimizer.state_dict()
        state_dict['fp32_from_fp16'] = self.fp32_from_fp16_groups
        return state_dict

    def load_state_dict(self, state_dict):
        """
Neel Kant's avatar
Neel Kant committed
379
380
381
        Loads a state_dict created by an earlier call to state_dict().
        If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
        whose parameters in turn came from ``model``, it is expected that the user
Raul Puri's avatar
Raul Puri committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        will call ``model.load_state_dict()`` before
        ``fp16_optimizer_instance.load_state_dict()`` is called.

        Example::

            model = torch.nn.Linear(D_in, D_out).cuda().half()
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
            optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
            ...
            checkpoint = torch.load("saved.pth")
            model.load_state_dict(checkpoint['model'])
            optimizer.load_state_dict(checkpoint['optimizer'])
        """
        # I think it should actually be ok to reload the optimizer before the model.
        self.loss_scaler = state_dict['loss_scaler']
        self.dynamic_loss_scale = state_dict['dynamic_loss_scale']
        self.overflow = state_dict['overflow']
        self.first_closure_call_this_step = state_dict['first_closure_call_this_step']
        self.optimizer.load_state_dict(state_dict['optimizer_state_dict'])
        # At this point, the optimizer's references to the model's fp32 parameters are up to date.
Neel Kant's avatar
Neel Kant committed
402
        # The optimizer's hyperparameters and internal buffers are also up to date.
Raul Puri's avatar
Raul Puri committed
403
        # However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
Neel Kant's avatar
Neel Kant committed
404
405
        # out of date.  There are two options.
        # 1:  Refresh the master params from the model's fp16 params.
Raul Puri's avatar
Raul Puri committed
406
407
408
        # This requires less storage but incurs precision loss.
        # 2:  Save and restore the fp32 master copies separately.
        # We choose option 2.
Neel Kant's avatar
Neel Kant committed
409
410
411
412
        #
        # Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
        # of their associated parameters, because it's possible those buffers might not exist yet in
        # the current optimizer instance.  In our case, as long as the current FP16_Optimizer has been
Raul Puri's avatar
Raul Puri committed
413
414
        # constructed in the same way as the one whose state_dict we are loading, the same master params
        # are guaranteed to exist, so we can just copy_() from the saved master params.
Neel Kant's avatar
Neel Kant committed
415
416
        for current_group, saved_group in zip(
                self.fp32_from_fp16_groups, state_dict['fp32_from_fp16']):
Raul Puri's avatar
Raul Puri committed
417
418
419
            for current, saved in zip(current_group, saved_group):
                current.data.copy_(saved.data)

Neel Kant's avatar
Neel Kant committed
420
    def step(self, closure=None):  # could add clip option.
Raul Puri's avatar
Raul Puri committed
421
        """
Neel Kant's avatar
Neel Kant committed
422
        If no closure is supplied, :attr:`step` should be called after
Raul Puri's avatar
Raul Puri committed
423
424
425
426
427
428
        ``fp16_optimizer_obj.backward(loss)``.
        :attr:`step` updates the fp32 master copy of parameters using the optimizer supplied to
        :class:`FP16_Optimizer`'s constructor, then copies the updated fp32 params into the fp16 params
        originally referenced by :class:`FP16_Optimizer`'s constructor, so the user may immediately run
        another forward pass using their model.

Neel Kant's avatar
Neel Kant committed
429
        If a closure is supplied, :attr:`step` may be called without a prior call to
Raul Puri's avatar
Raul Puri committed
430
431
432
433
434
435
436
437
438
439
        :attr:`backward(loss)`.
        This control flow is identical to `ordinary Pytorch optimizer use`_ with closures.
        However, the user should take care that any ``loss.backward()`` call within the closure
        has been replaced by ``fp16_optimizer_obj.backward(loss)``.

        Args:
           closure (optional):  Closure that will be supplied to the underlying optimizer originally passed to :class:`FP16_Optimizer`'s constructor.  closure should call :attr:`zero_grad()` on the :class:`FP16_Optimizer` object, compute the loss, call :attr:`backward(loss)`, and return the loss.

        Example with closure::

Neel Kant's avatar
Neel Kant committed
440
            # optimizer is assumed to be an FP16_Optimizer object, previously constructed from an
Raul Puri's avatar
Raul Puri committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
            # existing pytorch optimizer.
            for input, target in dataset:
                def closure():
                    optimizer.zero_grad()
                    output = model(input)
                    loss = loss_fn(output, target)
                    # loss.backward() becomes:
                    optimizer.backward(loss)
                    return loss
                optimizer.step(closure)

        .. warning::
            Currently, calling :attr:`step` with a closure is not compatible with dynamic loss scaling.

        .. _`ordinary Pytorch optimizer use`:
            http://pytorch.org/docs/master/optim.html#optimizer-step-closure
        """

        scale = self.loss_scaler.loss_scale
        self._update_scale(self.overflow)

        if self.overflow:
            self.maybe_print("OVERFLOW! Skipping step. Attempted loss scale: {}, reducing to {}"
Neel Kant's avatar
Neel Kant committed
464
                             .format(scale, self.loss_scale))
Raul Puri's avatar
Raul Puri committed
465
            return
Neel Kant's avatar
Neel Kant committed
466

Raul Puri's avatar
Raul Puri committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        if closure is not None:
            retval = self._step_with_closure(closure)
        else:
            retval = self.optimizer.step()

        self._master_params_to_model_params()

        return retval

    def _step_with_closure(self, closure):
        def wrapped_closure():
            # helpful for debugging
            # print("Calling wrapped_closure, first_closure_call_this_step = {}"
            #       .format(self.first_closure_call_this_step))
            if self.first_closure_call_this_step:
                # We expect that the fp16 params are initially fresh on entering self.step(),
                # so _master_params_to_model_params() is unnecessary the first time wrapped_closure()
                # is called within self.optimizer.step().
                self.first_closure_call_this_step = False
            else:
                # If self.optimizer.step() internally calls wrapped_closure more than once,
Neel Kant's avatar
Neel Kant committed
488
                # it may update the fp32 params after each call.  However, self.optimizer
Raul Puri's avatar
Raul Puri committed
489
490
491
492
493
494
495
                # doesn't know about the fp16 params at all.  If the fp32 params get updated,
                # we can't rely on self.optimizer to refresh the fp16 params.  We need
                # to handle that manually:
                self._master_params_to_model_params()
            # Our API expects the user to give us ownership of the backward() call by
            # replacing all calls to loss.backward() with optimizer.backward(loss).
            # This requirement holds whether or not the call to backward() is made within a closure.
Neel Kant's avatar
Neel Kant committed
496
            # If the user is properly calling optimizer.backward(loss) within "closure,"
Raul Puri's avatar
Raul Puri committed
497
            # calling closure() here will give the fp32 master params fresh gradients
Neel Kant's avatar
Neel Kant committed
498
            # for the optimizer to play with, so all wrapped_closure needs to do is call
Raul Puri's avatar
Raul Puri committed
499
            # closure() and return the loss.
Neel Kant's avatar
Neel Kant committed
500
            temp_loss = closure()
Raul Puri's avatar
Raul Puri committed
501
502
503
504
            while(self.overflow):
                scale = self.loss_scaler.loss_scale
                self._update_scale(self.overflow)
                self.maybe_print("OVERFLOW within closure! Skipping step. Attempted loss scale: {}, "
Neel Kant's avatar
Neel Kant committed
505
                                 "reducing to {}".format(scale, self.loss_scale))
Raul Puri's avatar
Raul Puri committed
506
507
508
509
510
511
512
513
514
515
                temp_loss = closure()
            return temp_loss

        retval = self.optimizer.step(wrapped_closure)

        self.first_closure_call_this_step = True

        return retval

    def backward(self, loss, update_master_grads=True, retain_graph=False):
Neel Kant's avatar
Neel Kant committed
516
        """
Raul Puri's avatar
Raul Puri committed
517
518
519
520
521
522
523
524
525
526
527
528
529
        :attr:`backward` performs the following conceptual steps:

        1. fp32_loss = loss.float() (see first Note below)
        2. scaled_loss = fp32_loss*loss_scale
        3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's leaves (which may be fp16, fp32, or a mixture, depending how your model was defined).
        4. fp16 grads are then copied to the master params' ``.grad`` attributes (see second Note), which are guaranteed to be fp32.
        5. Finally, master grads are divided by loss_scale.

        In this way, after :attr:`backward`, the master params have fresh gradients,
        and :attr:`step` may be called.

        .. note::
            :attr:`backward` internally converts the loss to fp32 before applying the loss scale.
Neel Kant's avatar
Neel Kant committed
530
531
            This provides some additional safety against overflow if the user has supplied an
            fp16 loss value.
Raul Puri's avatar
Raul Puri committed
532
            However, for maximum overflow safety, the user should
Neel Kant's avatar
Neel Kant committed
533
            compute the loss criterion (MSE, cross entropy, etc) in fp32 before supplying it to
Raul Puri's avatar
Raul Puri committed
534
535
536
            :attr:`backward`.

        .. warning::
Neel Kant's avatar
Neel Kant committed
537
538
539
540
541
542
            The gradients found in a model's leaves after the call to
            :attr:`backward` should not be regarded as valid in general,
            because it's possible
            they have been scaled (and in the case of dynamic loss scaling,
            the scale factor may change over time).
            If the user wants to inspect gradients after a call to :attr:`backward`,
Raul Puri's avatar
Raul Puri committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
            only the master gradients should be regarded as valid.  These can be retrieved via
            :attr:`inspect_master_grad_data()`.

        Args:
            loss:  The loss output by the user's model.  loss may be either float or half (but see first Note above).
            update_master_grads (bool, optional, default=True):  Option to copy fp16 grads to fp32 grads on this call.  By setting this to False, the user can delay the copy, which is useful to eliminate redundant fp16->fp32 grad copies if :attr:`backward` is being called on multiple losses in one iteration.  If set to False, the user becomes responsible for calling :attr:`update_master_grads` before calling :attr:`step`.
            retain_graph (bool, optional, default=False):  Forwards the usual ``retain_graph=True`` option to the internal call to ``loss.backward``.  If ``retain_graph`` is being used to accumulate gradient values from multiple backward passes before calling ``optimizer.step``, passing ``update_master_grads=False`` is also recommended (see Example below).

        Example::

            # Ordinary operation:
            optimizer.backward(loss)

            # Naive operation with multiple losses (technically valid, but less efficient):
Neel Kant's avatar
Neel Kant committed
557
            # fp32 grads will be correct after the second call,  but
Raul Puri's avatar
Raul Puri committed
558
559
560
561
562
            # the first call incurs an unnecessary fp16->fp32 grad copy.
            optimizer.backward(loss1)
            optimizer.backward(loss2)

            # More efficient way to handle multiple losses:
Neel Kant's avatar
Neel Kant committed
563
            # The fp16->fp32 grad copy is delayed until fp16 grads from all
Raul Puri's avatar
Raul Puri committed
564
565
566
567
            # losses have been accumulated.
            optimizer.backward(loss1, update_master_grads=False)
            optimizer.backward(loss2, update_master_grads=False)
            optimizer.update_master_grads()
Neel Kant's avatar
Neel Kant committed
568
569
        """
        # To consider:  try multiple backward passes using retain_grad=True to find
Raul Puri's avatar
Raul Puri committed
570
        # a loss scale that works.  After you find a loss scale that works, do a final dummy
Neel Kant's avatar
Neel Kant committed
571
572
        # backward pass with retain_graph=False to tear down the graph.  Doing this would avoid
        # discarding the iteration,  but probably wouldn't improve overall efficiency.
Raul Puri's avatar
Raul Puri committed
573
574
575
576
577
578
        self.loss_scaler.backward(loss.float(), retain_graph=retain_graph)
        if update_master_grads:
            self.update_master_grads()

    def update_master_grads(self):
        """
Neel Kant's avatar
Neel Kant committed
579
580
        Copy the ``.grad`` attribute from stored references to fp16 parameters to
        the ``.grad`` attribute of the fp32 master parameters that are directly
Raul Puri's avatar
Raul Puri committed
581
582
583
584
585
        updated by the optimizer.  :attr:`update_master_grads` only needs to be called if
        ``fp16_optimizer_obj.backward`` was called with ``update_master_grads=False``.
        """
        if self.dynamic_loss_scale:
            self._check_overflow()
Neel Kant's avatar
Neel Kant committed
586
587
            if self.overflow:
                return
Raul Puri's avatar
Raul Puri committed
588
589
590
591
592
        self._model_grads_to_master_grads()
        self._downscale_master()

    def inspect_master_grad_data(self):
        """
Neel Kant's avatar
Neel Kant committed
593
        When running with :class:`FP16_Optimizer`,
Raul Puri's avatar
Raul Puri committed
594
        ``.grad`` attributes of a model's fp16 leaves should not be
Neel Kant's avatar
Neel Kant committed
595
        regarded as truthful, because they might be scaled.
Raul Puri's avatar
Raul Puri committed
596
597
        After a call to :attr:`fp16_optimizer_obj.backward(loss)`, if no overflow was encountered,
        the fp32 master params' ``.grad``
Neel Kant's avatar
Neel Kant committed
598
599
        attributes will contain valid gradients properly divided by the loss scale.  However,
        because :class:`FP16_Optimizer` flattens some parameters, accessing them may be
Raul Puri's avatar
Raul Puri committed
600
601
602
603
604
        nonintuitive.  :attr:`inspect_master_grad_data`
        allows those gradients to be viewed with shapes corresponding to their associated model leaves.

        Returns:
            List of lists (one list for each parameter group).  The list for each parameter group
Neel Kant's avatar
Neel Kant committed
605
            is a list of the ``.grad.data`` attributes of the fp32 master params belonging to that group.
Raul Puri's avatar
Raul Puri committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        """
        if self.overflow:
            print("Warning:  calling FP16_Optimizer.inspect_master_grad_data while in an overflow state.  "
                  "Gradients are currently invalid (may be inf, nan, or stale).  Returning None.")
            return None
        else:
            # The optimizer owns only references to master params.
            master_grads_data = []
            for param_group in self.optimizer.param_groups:
                master_grads_this_group = []
                for param in param_group['params']:
                    if param.grad is not None:
                        master_grads_this_group.append(param.grad.data)
                    else:
                        master_grads_this_group.append(None)
                master_grads_data.append(master_grads_this_group)
            return master_grads_data

    # Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
Neel Kant's avatar
Neel Kant committed
625

Raul Puri's avatar
Raul Puri committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    def _get_loss_scale(self):
        return self.loss_scaler.loss_scale

    def _set_loss_scale(self, value):
        self.loss_scaler.cur_scale = value

    loss_scale = property(_get_loss_scale, _set_loss_scale)

    # Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

    # Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)