merge_mp_partitions.py 9.04 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

import os
import torch

from arguments import get_args
from megatron import mpu
from megatron.utils import ensure_directory_exists
from megatron.utils import get_checkpoint_name
from megatron.utils import get_checkpoint_tracker_filename
from megatron.utils import vocab_size_with_padding


def split_into_partitions(tensor, num_partitions, partition_dim, stride):

    per_partition_size = mpu.utils.divide(tensor.size(partition_dim),
                                          num_partitions)
    per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)

    partitions_list = torch.split(tensor,
                                  per_partition_per_stride_size,
                                  dim=partition_dim)

    partitions = []
    for i in range(num_partitions):
        partition = torch.cat(partitions_list[i::num_partitions],
                              dim=partition_dim)
        partitions.append(partition)

    return partitions


def merge_partitions(merged, partitions, partition_dim, stride):

    # Number and size of each partition.
    num_partitions = len(partitions)
    per_partition_size = None
    for partition in partitions:
        if per_partition_size is None:
            per_partition_size = partition.size(partition_dim)
        else:
            assert per_partition_size == partition.size(partition_dim)

    def concat_partitions(partitions_):
        with torch.no_grad():
            if (per_partition_size * num_partitions) == merged.size(
                    partition_dim):
                torch.cat(partitions_, dim=partition_dim, out=merged)
            else:
                print('     ***WARNING*** sizes do not match. Will cut '
                      'the merged partitions by {} along dimension {} '
                      'to reduce the size from {} to {} ...'.format(
                          (per_partition_size * num_partitions) - \
                          merged.size(partition_dim), partition_dim,
                          per_partition_size * num_partitions,
                          merged.size(partition_dim)))
                merged_ = torch.cat(partitions_, dim=partition_dim)
                merged_split = torch.split(merged_, merged.size(partition_dim),
                                           dim=partition_dim)
                merged_ = merged_split[0]
                assert merged_.size(partition_dim) == merged.size(partition_dim)
                merged.data.copy_(merged_.data)

    # If stride is 1, then do simple concatination.
    if stride == 1:
        concat_partitions(partitions)
        return

    # For none unity strides, first split based on stride and then group.
    per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)
    # Chunk and build a list.
    chunks = None
    for i, partition in enumerate(partitions):
        chunk = torch.split(partition,
                            per_partition_per_stride_size,
                            dim=partition_dim)

        if chunks is None:
            chunks = [0]*(num_partitions*len(chunk))
        chunks[i::num_partitions] = chunk

    # Concatinate.
    concat_partitions(chunks)

    return


def get_model(model_type, args):

    if model_type == 'BERT':
        from pretrain_albert import model_provider
        args.tokentype_size = 2
    elif  model_type == 'GPT':
        from pretrain_gpt2 import model_provider
    else:
        raise Exception('unrecognized model type: {}'.format(model_type))

    orig_vocab_size = args.vocab_size
    args.vocab_size = vocab_size_with_padding(args.vocab_size, args)
    model = model_provider(args)
    model = model.half()
    args.vocab_size = orig_vocab_size

    return model


def get_parallel_checkpoint_name(path):

    tracker_filename = get_checkpoint_tracker_filename(path)
    iteration = 0
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        iteration = int(metastring)
    assert iteration > 0
    checkpoint_name = get_checkpoint_name(path, iteration)

    return checkpoint_name, iteration


def test_split_merge():

    print('testing split and merge ...')

    #[QKV.ROW-COL]
    tensor = torch.FloatTensor([[1.11, 1.12, 1.13, 1.14, 1.15],
                                [1.21, 1.22, 1.23, 1.24, 1.25],
                                [1.31, 1.32, 1.33, 1.34, 1.35],
                                [1.41, 1.42, 1.43, 1.44, 1.45],
                                [2.11, 2.12, 2.13, 2.14, 2.15],
                                [2.21, 2.22, 2.23, 2.24, 2.25],
                                [2.31, 2.32, 2.33, 2.34, 2.35],
                                [2.41, 2.42, 2.43, 2.44, 2.45],
                                [3.11, 3.12, 3.13, 3.14, 3.15],
                                [3.21, 3.22, 3.23, 3.24, 3.25],
                                [3.31, 3.32, 3.33, 3.34, 3.35],
                                [3.41, 3.42, 3.43, 3.44, 3.45]])

    num_partitions = 2
    partition_dim = 0
    stride = 3
    partitions = split_into_partitions(tensor, num_partitions,
                                       partition_dim, stride)

    merged = torch.zeros_like(tensor)
    merge_partitions(merged, partitions, partition_dim, stride)

    max_error = (merged - tensor).abs().max()
    print('  > max error (should be zero): {}'.format(max_error))


def main(model_type):

    # Args
    args = get_args()

    print('\n merging model parallel partitions ...')
    assert args.vocab_size is not None
    print(' > number of partitions: {}'.format(args.model_parallel_size))
    print(' > checkpoint path: {}'.format(args.load))
    print(' > model parameters:')
    print('    number of tokens ................ {} '.format(args.vocab_size))
    print('    number of layers ................ {}'.format(args.num_layers))
    print('    hidden sise ..................... {}'.format(args.hidden_size))
    print('    number of attention heads ....... {}'.format(
        args.num_attention_heads))
    print('    maximum position embeddings ..... {}'.format(
        args.max_position_embeddings))

    # Full model.
    print('> building the full model ...')
    mpu.initialize.set_model_parallel_world_size(1)
    mpu.initialize.set_model_parallel_rank(0)
    merged_model = get_model(model_type, args)

    # Build and load partitions.
    partitions = []
    iteration = 0
    mpu.initialize.set_model_parallel_world_size(args.model_parallel_size)
    for rank in range(args.model_parallel_size):
        mpu.initialize.set_model_parallel_rank(rank)
        checkpoint_name, iteration = get_parallel_checkpoint_name(args.load)
        print('> loading {} ...'.format(checkpoint_name))
        model_ = get_model(model_type, args)
        sd = torch.load(checkpoint_name, map_location='cpu')
        model_.load_state_dict(sd['model'])
        partitions.append(model_)


    # Parameter generators so we can loop through them semiltaneouly.
    merged_params_gen = merged_model.named_parameters()
    partitions_params_gen = [partition.named_parameters()
                             for partition in partitions]
    while True:
        try:

            # Get the params and check names.
            name, merged_param = next(merged_params_gen)
            print(' > working on {} ...'.format(name))
            print('     merged         type: {}, size: {}'.format(
                merged_param.dtype, list(merged_param.size())))
            partitions_param = []
            for rank, partition_params_gen in enumerate(partitions_params_gen):
                partition_name, partition_param = next(partition_params_gen)
                assert partition_name == name
                partitions_param.append(partition_param)
                print('     partition {}    type: {}, size: {}'.format(
                    rank, partition_param.dtype, list(partition_param.size())))

            # For the non-parallel parameters, simply copy the rank 0 values.
            if not hasattr(merged_param, 'model_parallel'):
                print('     none-parallel parameter, simple copy from rank 0')
                with torch.no_grad():
                    merged_param.data.copy_(partitions_param[0].data)
            # For parallel parameters, merge the values
            else:
                print('     parallel parameter merge with stride {} along '
                      'dimention {}'.format(merged_param.stride,
                                            merged_param.partition_dim))
                merge_partitions(merged_param,
                                 partitions_param,
                                 merged_param.partition_dim,
                                 merged_param.stride)

        except StopIteration:
            break


    # Save the model.
    mpu.initialize.set_model_parallel_rank(0)
    sd = {}
    sd['model'] = merged_model.state_dict_for_save_checkpoint()
    sd['iteration'] = iteration
    merged_path = os.path.join(args.load, 'merged')
    checkpoint_name = get_checkpoint_name(merged_path, iteration)
    ensure_directory_exists(checkpoint_name)
    print('> saving merged model to {}'.format(checkpoint_name))
    torch.save(sd, checkpoint_name)

    print('done :-)')


if __name__ == '__main__':

    main('BERT')