bert_dataset.py 8.36 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
"""BERT Style dataset."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
17

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
18
import os
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
19
20
21
22
23
24
import time

import numpy as np
import torch
from torch.utils.data import Dataset

Neel Kant's avatar
Neel Kant committed
25
from megatron import get_tokenizer, get_args
26
from megatron import mpu
27
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
28
from megatron.data.dataset_utils import build_training_sample
29
from megatron import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
30

Neel Kant's avatar
Neel Kant committed
31

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
32
class BertDataset(Dataset):
33

34
    def __init__(self, name, indexed_dataset, data_prefix,
35
36
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
37
38

        # Params to store.
39
        self.name = name
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
41
42
43
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

44
        # Dataset.
45
46
        self.indexed_dataset = indexed_dataset

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
47
        # Build the samples mapping.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
48
49
50
51
52
53
        self.samples_mapping = get_samples_mapping_(self.indexed_dataset,
                                                    data_prefix,
                                                    num_epochs,
                                                    max_num_samples,
                                                    self.max_seq_length,
                                                    short_seq_prob,
54
55
                                                    self.seed,
                                                    self.name)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56
57

        # Vocab stuff.
58
59
60
61
62
63
64
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad
65

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
66
    def __len__(self):
67
        return self.samples_mapping.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
68
69

    def __getitem__(self, idx):
70
71
        start_idx, end_idx, seq_length = self.samples_mapping[idx]
        sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
72
73
74
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        np_rng = np.random.RandomState(seed=(self.seed + idx))
75
76
77
78
79
80
81
        return build_training_sample(sample, seq_length,
                                     self.max_seq_length,  # needed for padding
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
82

83

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
84
def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
85
86
87

    print_rank_0(' > building dataset index ...')

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88
89
90
91
    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
92
93
94
95
96
97
98
99
100
101
    assert indexed_dataset.sizes.shape[0] == indexed_dataset.doc_idx[-1]
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))

    print_rank_0(' > indexed dataset stats:')
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.doc_idx.shape[0] - 1))
    print_rank_0('    number of sentences: {}'.format(
        indexed_dataset.sizes.shape[0]))

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
102
103
104
    return indexed_dataset


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def get_train_valid_test_split_(splits_string, size):
    """ Get dataset splits from comma or '/' separated string list."""

    splits = []
    if splits_string.find(',') != -1:
        splits = [float(s) for s in splits_string.split(',')]
    elif splits_string.find('/') != -1:
        splits = [float(s) for s in splits_string.split('/')]
    else:
        splits = [float(splits_string)]
    while len(splits) < 3:
        splits.append(0.)
    splits = splits[:3]
    splits_sum = sum(splits)
    assert splits_sum > 0.0
Neel Kant's avatar
Neel Kant committed
120
    splits = [split / splits_sum for split in splits]
121
122
123
124
125
126
127
128
129
130
131
132
    splits_index = [0]
    for index, split in enumerate(splits):
        splits_index.append(splits_index[index] +
                            int(round(split * float(size))))
    diff = splits_index[-1] - size
    for index in range(1, len(splits_index)):
        splits_index[index] -= diff
    assert len(splits_index) == 4
    assert splits_index[-1] == size
    return splits_index


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
133
134
135
136
137
138
def get_samples_mapping_(indexed_dataset,
                         data_prefix,
                         num_epochs,
                         max_num_samples,
                         max_seq_length,
                         short_seq_prob,
139
140
                         seed,
                         name):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141
    if not num_epochs:
142
        if not max_num_samples:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
143
144
145
146
147
148
149
150
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
151
152
153
154
155
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156
157
158
159
160
161
162
163
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
164
        print(' > WARNING: could not find index map file {}, building '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
165
              'the indices on rank 0 ...'.format(indexmap_filename))
166

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
167
168
169
170
171
172
        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
173
        start_time = time.time()
174
175
        print_rank_0(' > building sapmles index mapping for {} ...'.format(
            name))
176
177
178
        # First compile and then import.
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
Mohammad's avatar
Mohammad committed
179
        from megatron.data import helpers
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
180
181
182
183
184
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
Neel Kant's avatar
Neel Kant committed
185
            max_seq_length - 3,  # account for added tokens
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
186
187
188
            short_seq_prob,
            seed,
            verbose)
189
        print_rank_0(' > done building sapmles index maping')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
190
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
191
192
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
193
        # Make sure all the ranks have built the mapping
194
        print_rank_0(' > elasped time to build and save samples mapping '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
195
196
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
197
198
199
200
201
202
203
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
205

    # Load indexed dataset.
206
    print_rank_0(' > loading indexed mapping from {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
207
208
209
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True)
210
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
211
        time.time() - start_time))
212
    print_rank_0('    total number of samples: {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
213
        samples_mapping.shape[0]))
214

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
215
    return samples_mapping