"src/targets/vscode:/vscode.git/clone" did not exist on "516779cb49dcbcc5fc4051f7a8c7de9da27be216"
schedules.py 17.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch

from megatron import get_args
19
from megatron import get_num_microbatches
20
21
from megatron import get_timers
from megatron import mpu
22
from megatron import p2p_communication
23
24
25


def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
26
27
28
29
30
31
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    timers = get_timers()

    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

    return output_tensor


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
46
47
48
49
50
51
52
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

    # Backward pass.
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    timers('backward-compute').stop()

    return input_tensor_grad


def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
79
80
81
82
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    assert len(model) == 1
    model = model[0]

    losses_reduced = []
    for i in range(get_num_microbatches()):
        input_tensor, output_tensor_grad = None, None
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if not forward_only:
            backward_step(optimizer, input_tensor, output_tensor,
                          output_tensor_grad)

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
100
101
102
103
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
104
105
106
107
108
109
110
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
111
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
112
113
114
115
116
117
118
119

    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
120
121
122
123
124
125
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
126
127
128
129
130
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
131
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
132
133
134
135
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
136
137
138
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

139
    def get_model_chunk_id(microbatch_id, forward):
140
        """Helper method to get the model chunk ID given the iteration number."""
141
142
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
143
        if not forward:
144
145
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
146

147
    def forward_step_helper(microbatch_id):
148
149
150
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
151
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
152
153
154
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_first_stage():
155
156
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
157
158
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
159
160
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
161
162
163
164
165
166
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

        return output_tensor

167
    def backward_step_helper(microbatch_id):
168
169
170
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
171
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
172
173
174
175
176
177
178
179
180
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
181
182
183
184
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
185
186
187
188
189

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
190
191
    input_tensors[0].append(
        p2p_communication.recv_forward(timers, use_ring_exchange=True))
192
193
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
194
195

        # Determine if tensor should be received from previous stage.
196
197
198
199
200
201
202
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
203
204

        # Don't send tensor downstream if on last stage.
205
206
        if mpu.is_pipeline_last_stage():
            output_tensor = None
207
208
209

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
210
211
212
213
214
215
216
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
217
                p2p_communication.send_forward_backward_recv_forward_backward(
218
219
220
221
222
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
223
            input_tensor = \
224
225
                p2p_communication.send_forward_recv_forward(
                    output_tensor, recv_prev, timers)
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        input_tensors[next_forward_model_chunk_id].append(input_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
264
265
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
266
267
268
269
270
271
272
273
274
275

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
276
277
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
278

279
280
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
281
282
283
284
285
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
286
            p2p_communication.send_forward_backward_recv_forward_backward(
287
288
289
290
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
                    timers=timers)

291
292
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
293
294
295
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
296
297
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
298

299
    # Run cooldown backward passes (flush out pipeline).
300
301
302
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
303
                p2p_communication.recv_backward(timers, use_ring_exchange=True))
304
305
306
307
308
309
310
311
312
313
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
314
315
                p2p_communication.send_backward_recv_backward(
                    input_tensor_grad, recv_next, timers))
316
317
318
319

    return losses_reduced


320
321
322
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
323
324
325
326
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
327
328
    timers = get_timers()

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

    input_tensors = []
    output_tensors = []
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
349
        input_tensor = p2p_communication.recv_forward(timers)
350
351
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
352
353
354
355
356
        # Barrier before first receive to measure forward stall.
        if i == (num_warmup_microbatches - 1):
            timers('forward-pipeline-stall').start()
            torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
            timers('forward-pipeline-stall').stop()
357
        p2p_communication.send_forward(output_tensor, timers)
358
359
360
361

        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

362
363
364
365
366
367
    # Barrier before first receive to measure forward stall.
    if num_warmup_microbatches == 0:
        timers('forward-pipeline-stall').start()
        torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
        timers('forward-pipeline-stall').stop()

368
369
370
371
    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
372
        input_tensor = p2p_communication.recv_forward(timers)
373
374
375
376
377
378
379
380

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
381
            p2p_communication.send_forward(output_tensor, timers)
382
        else:
383
            output_tensor_grad = \
384
385
                p2p_communication.send_forward_recv_backward(output_tensor,
                                                             timers)
386
387
388
389
390
391
392
393

        # Add input_tensor and output_tensor to end of list, then pop from the
        # start of the list for backward pass.
        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

        if forward_only:
            if not last_iteration:
394
                input_tensor = p2p_communication.recv_forward(timers)
395
396
397
398
399
400
401
402
403
        else:
            input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
404
                p2p_communication.send_backward(input_tensor_grad, timers)
405
            else:
406
                input_tensor = \
407
408
                    p2p_communication.send_backward_recv_forward(
                        input_tensor_grad, timers)
409
410
411
412
413
414
415

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

416
            output_tensor_grad = p2p_communication.recv_backward(timers)
417
418
419
420
421

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

422
            p2p_communication.send_backward(input_tensor_grad, timers)
423
424

    return losses_reduced