"src/turbomind/kernels/reduce_kernel_utils.cuh" did not exist on "9efcac38af58b7247e205c47efe090b4c6ec7574"
ict_dataset.py 7.42 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import itertools
import random
import os
import time

import numpy as np
import torch
from torch.utils.data import Dataset

from megatron import get_tokenizer
from megatron import print_rank_0
from megatron import mpu
from megatron.data import helpers


class InverseClozeDataset(Dataset):
    """Dataset containing sentences and their blocks for an inverse cloze task."""
    def __init__(self, name, block_dataset, title_dataset, data_prefix,
                 num_epochs, max_num_samples, max_seq_length,
                 query_in_block_prob, short_seq_prob, seed):
        self.name = name
        self.seed = seed
        self.max_seq_length = max_seq_length
        self.query_in_block_prob = query_in_block_prob
        self.block_dataset = block_dataset
        self.title_dataset = title_dataset
        self.short_seq_prob = short_seq_prob
        self.rng = random.Random(self.seed)

        self.samples_mapping = self.get_samples_mapping(
            data_prefix, num_epochs, max_num_samples)
        self.tokenizer = get_tokenizer()
        self.vocab_id_list = list(self.tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_list = self.tokenizer.inv_vocab
        self.cls_id = self.tokenizer.cls
        self.sep_id = self.tokenizer.sep
        self.mask_id = self.tokenizer.mask
        self.pad_id = self.tokenizer.pad

    def __len__(self):
        return self.samples_mapping.shape[0]

    def __getitem__(self, idx):
        start_idx, end_idx, doc_idx, block_idx = self.samples_mapping[idx]
        title = list(self.title_dataset[int(doc_idx)])
        block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
        assert len(block) > 1

        # avoid selecting the first or last sentence to be the query.
        if len(block) == 2:
            rand_sent_idx = int(self.rng.random() > 0.5)
        else:
            rand_sent_idx = self.rng.randint(1, len(block) - 2)

        # keep the query in the context 10% of the time.
        if self.rng.random() < self.query_in_block_prob:
            query = block[rand_sent_idx].copy()
        else:
            query = block.pop(rand_sent_idx)

        # still need to truncate because blocks are concluded when
        # the sentence lengths have exceeded max_seq_length.
        query = query[:self.max_seq_length - 2]
        block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))]

        query_tokens, query_pad_mask = self.concat_and_pad_tokens(query)
        block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)

        sample = {
            'query_tokens': np.array(query_tokens),
            'query_pad_mask': np.array(query_pad_mask),
            'block_tokens': np.array(block_tokens),
            'block_pad_mask': np.array(block_pad_mask),
            'block_data': np.array([start_idx, end_idx, doc_idx, block_idx]).astype(np.int64)
        }

        return sample

    def encode_text(self, text):
        return self.tokenizer.tokenize(text)

    def decode_tokens(self, token_ids):
        tokens = self.tokenizer.tokenizer.convert_ids_to_tokens(token_ids)
        return ' '.join(token for token in tokens if token != '[PAD]')

    def get_block(self, start_idx, end_idx, doc_idx):
        """Get the IDs for an evidence block plus the title of the corresponding document"""
        block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
        title = list(self.title_dataset[int(doc_idx)])

        block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))]
        block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)

        return (block_tokens, block_pad_mask)

    def concat_and_pad_tokens(self, tokens, title=None):
        """concat with special tokens and pad sequence to self.max_seq_length"""
        tokens = [self.cls_id] + tokens + [self.sep_id]
        if title is not None:
            tokens += title + [self.sep_id]
        assert len(tokens) <= self.max_seq_length, len(tokens)

        num_pad = self.max_seq_length - len(tokens)
        pad_mask = [1] * len(tokens) + [0] * num_pad
        tokens += [self.pad_id] * num_pad
        return tokens, pad_mask

    def get_samples_mapping(self, data_prefix, num_epochs, max_num_samples):
        if not num_epochs:
            if not max_num_samples:
                raise ValueError("Need to specify either max_num_samples "
                                 "or num_epochs")
            num_epochs = np.iinfo(np.int32).max - 1
        if not max_num_samples:
            max_num_samples = np.iinfo(np.int64).max - 1

        # Filename of the index mapping
        indexmap_filename = data_prefix
        indexmap_filename += '_{}_indexmap'.format(self.name)
        if num_epochs != (np.iinfo(np.int32).max - 1):
            indexmap_filename += '_{}ep'.format(num_epochs)
        if max_num_samples != (np.iinfo(np.int64).max - 1):
            indexmap_filename += '_{}mns'.format(max_num_samples)
        indexmap_filename += '_{}msl'.format(self.max_seq_length)
        indexmap_filename += '_{}s'.format(self.seed)
        indexmap_filename += '.npy'

        # Build the indexed mapping if not exist.
        if torch.distributed.get_rank() == 0 and \
                not os.path.isfile(indexmap_filename):
            print(' > WARNING: could not find index map file {}, building '
                  'the indices on rank 0 ...'.format(indexmap_filename))

            # Make sure the types match the helpers input types.
            assert self.block_dataset.doc_idx.dtype == np.int64
            assert self.block_dataset.sizes.dtype == np.int32

            # Build samples mapping
            verbose = torch.distributed.get_rank() == 0
            start_time = time.time()
            print_rank_0(' > building samples index mapping for {} ...'.format(
                self.name))
            samples_mapping = helpers.build_blocks_mapping(
                self.block_dataset.doc_idx,
                self.block_dataset.sizes,
                self.title_dataset.sizes,
                num_epochs,
                max_num_samples,
                self.max_seq_length-3,  # account for added tokens
                self.seed,
                verbose)
            print_rank_0(' > done building samples index mapping')
            np.save(indexmap_filename, samples_mapping, allow_pickle=True)
            print_rank_0(' > saved the index mapping in {}'.format(
                indexmap_filename))
            # Make sure all the ranks have built the mapping
            print_rank_0(' > elapsed time to build and save samples mapping '
                         '(seconds): {:4f}'.format(
                time.time() - start_time))
        # This should be a barrier but nccl barrier assumes
        # device_index=rank which is not the case for model
        # parallel case
        counts = torch.cuda.LongTensor([1])
        torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
        assert counts[0].item() == torch.distributed.get_world_size(
            group=mpu.get_data_parallel_group())

        # Load indexed dataset.
        print_rank_0(' > loading indexed mapping from {}'.format(
            indexmap_filename))
        start_time = time.time()
        samples_mapping = np.load(indexmap_filename, allow_pickle=True)
        print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
            time.time() - start_time))
        print_rank_0('    total number of samples: {}'.format(
            samples_mapping.shape[0]))

        return samples_mapping