classification.py 6.14 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Classification model."""

import torch

20
from megatron import get_args, print_rank_last
21
from megatron import mpu
22
from megatron.model.enums import AttnMaskType
23
from megatron.model.bert_model import bert_extended_attention_mask, bert_position_ids
24
25
26
27
from megatron.model.language_model import get_language_model
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
28
from .module import MegatronModule
29
30


31
class ClassificationBase(MegatronModule):
32

Mohammad's avatar
Mohammad committed
33
    def __init__(self, num_classes, num_tokentypes=2):
34
        super(ClassificationBase, self).__init__(share_word_embeddings=False)
Mohammad's avatar
Mohammad committed
35
        args = get_args()
36
37

        self.num_classes = num_classes
Mohammad's avatar
Mohammad committed
38
        init_method = init_method_normal(args.init_method_std)
39
40
41
42

        self.language_model, self._language_model_key = get_language_model(
            num_tokentypes=num_tokentypes,
            add_pooler=True,
43
            encoder_attn_mask_type=AttnMaskType.padding,
44
            init_method=init_method,
Mohammad's avatar
Mohammad committed
45
46
            scaled_init_method=scaled_init_method_normal(args.init_method_std,
                                                         args.num_layers))
47
48

        # Multi-choice head.
49
50
51
52
53
54
        if mpu.is_pipeline_last_stage():
            self.classification_dropout = torch.nn.Dropout(args.hidden_dropout)
            self.classification_head = get_linear_layer(args.hidden_size,
                                                        self.num_classes,
                                                        init_method)
            self._classification_head_key = 'classification_head'
55

56
    def forward(self, model_input, attention_mask, tokentype_ids=None):
57

58
        extended_attention_mask = bert_extended_attention_mask(attention_mask)
59

60
61
62
63
        kwargs = {}
        if mpu.is_pipeline_first_stage():
            input_ids = model_input
            position_ids = bert_position_ids(input_ids)
64

65
66
67
68
69
70
71
72
73
            args = [input_ids, position_ids, extended_attention_mask]
            kwargs['tokentype_ids'] = tokentype_ids
        else:
            args = [model_input, extended_attention_mask]
        lm_output = self.language_model(*args, **kwargs)
        if mpu.is_pipeline_last_stage():
            _, pooled_output = lm_output
            classification_output = self.classification_dropout(pooled_output)
            classification_logits = self.classification_head(classification_output)
74

75
76
            # Reshape back to separate choices.
            classification_logits = classification_logits.view(-1, self.num_classes)
77

78
79
            return classification_logits
        return lm_output
80
81
82
83
84
85
86
87
88
89

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
90
91
92
93
        if mpu.is_pipeline_last_stage():
            state_dict_[self._classification_head_key] \
                = self.classification_head.state_dict(
                    destination, prefix, keep_vars)
94
95
96
97
98
99
100
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
101
102
103
104
105
106
107
108
        if mpu.is_pipeline_last_stage():
            if self._classification_head_key in state_dict:
                self.classification_head.load_state_dict(
                    state_dict[self._classification_head_key], strict=strict)
            else:
                print_rank_last('***WARNING*** could not find {} in the checkpoint, '
                                'initializing to random'.format(
                                    self._classification_head_key))
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160


class Classification(ClassificationBase):

    def __init__(self, num_classes, num_tokentypes=2):
        super(Classification, self).__init__(
            num_classes, num_tokentypes=num_tokentypes)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None):
        return super(Classification, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids)


class ClassificationFirstStage(ClassificationBase):

    def __init__(self, num_classes, num_tokentypes=2):
        super(ClassificationFirstStage, self).__init__(
            num_classes, num_tokentypes=num_tokentypes)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None):
        return super(ClassificationFirstStage, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids)


class ClassificationIntermediateStage(ClassificationBase):

    def __init__(self, num_classes, num_tokentypes=2):
        super(ClassificationIntermediateStage, self).__init__(
            num_classes, num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask):
        return super(ClassificationIntermediateStage, self).forward(
            hidden_state,
            attention_mask)


class ClassificationLastStage(ClassificationBase):

    def __init__(self, num_classes, num_tokentypes=2):
        super(ClassificationLastStage, self).__init__(
            num_classes, num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask):
        return super(ClassificationLastStage, self).forward(
            hidden_state,
            attention_mask)