bert_dataset.py 12 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
"""BERT Style dataset."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
17

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
18
import os
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
19
20
21
22
23
24
import time

import numpy as np
import torch
from torch.utils.data import Dataset

25
from megatron import get_tokenizer
26
from megatron import mpu
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
from megatron.data.dataset_utils import build_training_sample
28
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
29
from megatron.data.ict_dataset import InverseClozeDataset
30
from megatron import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
31

32

33
34
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
35
                                    max_seq_length, masked_lm_prob,
36
37
                                    short_seq_prob, seed, skip_warmup,
                                    ict_dataset=False):
38
39
40
41
42
43

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

44
    if ict_dataset:
Neel Kant's avatar
Neel Kant committed
45
46
47
        title_dataset = get_indexed_dataset_(data_prefix + '-titles',
                                             data_impl,
                                             skip_warmup)
48

49
50
51
52
53
54
55
56
    # Get start and end indices of train/valid/train into doc-idx
    # Note that doc-idx is desinged to be num-docs + 1 so we can
    # easily iterate over it.
    total_num_of_documents = indexed_dataset.doc_idx.shape[0] - 1
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')
Neel Kant's avatar
Neel Kant committed
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
        start_index = indexed_dataset.doc_idx[splits[index]]
        end_index = indexed_dataset.doc_idx[splits[index + 1]]
        print_rank_0('     sentence indices in [{}, {}) total of {} '
                     'sentences'.format(start_index, end_index,
                                        end_index - start_index))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
            # Get the pointer to the original doc-idx so we can set it later.
            doc_idx_ptr = indexed_dataset.get_doc_idx()
            # Slice the doc-idx
            start_index = splits[index]
            # Add +1 so we can index into the dataset to get the upper bound.
            end_index = splits[index + 1] + 1
            # New doc_idx view.
            indexed_dataset.set_doc_idx(doc_idx_ptr[start_index:end_index])
            # Build the dataset accordingly.
84
            kwargs = dict(
85
86
87
88
89
90
                name=name,
                data_prefix=data_prefix,
                num_epochs=None,
                max_num_samples=train_valid_test_num_samples[index],
                max_seq_length=max_seq_length,
                short_seq_prob=short_seq_prob,
91
92
93
94
                seed=seed
            )

            if ict_dataset:
Neel Kant's avatar
Neel Kant committed
95
96
97
98
99
                dataset = InverseClozeDataset(
                    block_dataset=indexed_dataset,
                    title_dataset=title_dataset,
                    **kwargs
                )
100
            else:
Neel Kant's avatar
Neel Kant committed
101
102
103
104
105
                dataset = BertDataset(
                    indexed_dataset=indexed_dataset,
                    masked_lm_prob=masked_lm_prob,
                    **kwargs
                )
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            # Set the original pointer so dataset remains the main dataset.
            indexed_dataset.set_doc_idx(doc_idx_ptr)
            # Checks.
            assert indexed_dataset.doc_idx[0] == 0
            assert indexed_dataset.doc_idx.shape[0] == \
                (total_num_of_documents + 1)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
121
class BertDataset(Dataset):
122

123
    def __init__(self, name, indexed_dataset, data_prefix,
124
125
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126
127

        # Params to store.
128
        self.name = name
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129
130
131
132
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

133
        # Dataset.
134
135
        self.indexed_dataset = indexed_dataset

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
136
137

        # Build the samples mapping.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
138
139
140
141
142
143
        self.samples_mapping = get_samples_mapping_(self.indexed_dataset,
                                                    data_prefix,
                                                    num_epochs,
                                                    max_num_samples,
                                                    self.max_seq_length,
                                                    short_seq_prob,
144
145
                                                    self.seed,
                                                    self.name)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
146
147

        # Vocab stuff.
148
149
150
151
152
153
154
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad
155

156

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
157
    def __len__(self):
158
        return self.samples_mapping.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159

160

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161
    def __getitem__(self, idx):
162

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
163
164
165
166
        start_index, end_index, seq_length = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
167
168
169
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        np_rng = np.random.RandomState(seed=(self.seed + idx))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
170
        return build_training_sample(sample, seq_length,
171
                                     self.max_seq_length, # needed for padding
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
172
173
174
175
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
176
                                     self.masked_lm_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177

178

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
179
def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
180
181
182

    print_rank_0(' > building dataset index ...')

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
183
184
185
186
    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
187
188
189
190
191
192
193
194
195
196
    assert indexed_dataset.sizes.shape[0] == indexed_dataset.doc_idx[-1]
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))

    print_rank_0(' > indexed dataset stats:')
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.doc_idx.shape[0] - 1))
    print_rank_0('    number of sentences: {}'.format(
        indexed_dataset.sizes.shape[0]))

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
197
198
199
    return indexed_dataset


200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def get_train_valid_test_split_(splits_string, size):
    """ Get dataset splits from comma or '/' separated string list."""

    splits = []
    if splits_string.find(',') != -1:
        splits = [float(s) for s in splits_string.split(',')]
    elif splits_string.find('/') != -1:
        splits = [float(s) for s in splits_string.split('/')]
    else:
        splits = [float(splits_string)]
    while len(splits) < 3:
        splits.append(0.)
    splits = splits[:3]
    splits_sum = sum(splits)
    assert splits_sum > 0.0
    splits = [split/splits_sum for split in splits]
    splits_index = [0]
    for index, split in enumerate(splits):
        splits_index.append(splits_index[index] +
                            int(round(split * float(size))))
    diff = splits_index[-1] - size
    for index in range(1, len(splits_index)):
        splits_index[index] -= diff
    assert len(splits_index) == 4
    assert splits_index[-1] == size
    return splits_index


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
228
229
230
231
232
233
def get_samples_mapping_(indexed_dataset,
                         data_prefix,
                         num_epochs,
                         max_num_samples,
                         max_seq_length,
                         short_seq_prob,
234
235
                         seed,
                         name):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
236
    if not num_epochs:
237
        if not max_num_samples:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
238
239
240
241
242
243
244
245
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
246
247
248
249
250
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
251
252
253
254
255
256
257
258
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
259
        print(' > WARNING: could not find index map file {}, building '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
260
              'the indices on rank 0 ...'.format(indexmap_filename))
261

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
262
263
264
265
266
267
        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
268
        start_time = time.time()
269
270
        print_rank_0(' > building sapmles index mapping for {} ...'.format(
            name))
Mohammad's avatar
Mohammad committed
271
        from megatron.data import helpers
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
272
273
274
275
276
277
278
279
280
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length-3, # account for added tokens
            short_seq_prob,
            seed,
            verbose)
281
        print_rank_0(' > done building sapmles index maping')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
282
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
283
284
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
        # Make sure all the ranks have built the mapping
286
        print_rank_0(' > elasped time to build and save samples mapping '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
288
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
289
290
291
292
293
294
295
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
296
297

    # Load indexed dataset.
298
    print_rank_0(' > loading indexed mapping from {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
299
300
301
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True)
302
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
303
        time.time() - start_time))
304
    print_rank_0('    total number of samples: {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
305
        samples_mapping.shape[0]))
306

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
307
    return samples_mapping