pretrain_albert.py 8.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""Pretrain ALBERT"""
17
18
19
20
21
22
23
24
25
26

import torch
import torch.nn.functional as F

from megatron import mpu
from megatron.model import BertModel
from megatron.utils import print_rank_0
from megatron.utils import reduce_losses
from megatron.utils import vocab_size_with_padding
from megatron.training import run
27
from megatron.data.albert_dataset import build_train_valid_test_datasets
28
29
from megatron.data_utils.samplers import DistributedBatchSampler

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def model_provider(args):
    """Build the model."""

    print_rank_0('building BERT model ...')

    model = BertModel(
        num_layers=args.num_layers,
        vocab_size=args.vocab_size,
        hidden_size=args.hidden_size,
        num_attention_heads=args.num_attention_heads,
        embedding_dropout_prob=args.hidden_dropout,
        attention_dropout_prob=args.attention_dropout,
        output_dropout_prob=args.hidden_dropout,
        max_sequence_length=args.max_position_embeddings,
        checkpoint_activations=args.checkpoint_activations,
        checkpoint_num_layers=args.checkpoint_num_layers,
        add_binary_head=True,
        layernorm_epsilon=args.layernorm_epsilon,
        num_tokentypes=args.tokentype_size,
        parallel_output=True)

    return model


def get_batch(data_iterator, timers):

    # Items and their type.
    keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
    sentence_order = data_b['is_random'].long()
    loss_mask = data_b['loss_mask'].float()
    lm_labels = data_b['labels'].long()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
76
    padding_mask = data_b['padding_mask'].long()
77
78
79
80
81
82
83
84
85
86
87
88
89
90

    return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask


def forward_step(data_iterator, model, args, timers):
    """Forward step."""

    # Get the batch.
    timers('batch generator').start()
    tokens, types, sentence_order, loss_mask, lm_labels, padding_mask \
        = get_batch(data_iterator, timers)
    timers('batch generator').stop()

    # Forward model.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
91
    lm_logits, sop_logits = model(tokens, padding_mask, tokentype_ids=types)
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    sop_loss = F.cross_entropy(sop_logits.view(-1, 2).contiguous().float(),
                               sentence_order.view(-1).contiguous(),
                               ignore_index=-1)

    lm_loss_ = mpu.vocab_parallel_cross_entropy(lm_logits.contiguous().float(),
                                                lm_labels.contiguous())
    lm_loss = torch.sum(
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()

    loss = lm_loss + sop_loss

    reduced_losses = reduce_losses([lm_loss, sop_loss])

    return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]}


def get_train_val_test_data(args):
    """Load the data on rank zero and boradcast number of tokens to all GPUS."""

112
    (train_data, valid_data, test_data) = (None, None, None)
113
114
115

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
116
117
118
119
        print_rank_0('> building train, validation, and test datasets '
                     'for ALBERT ...')

        if args.data_loader is None:
120
            args.data_loader = 'binary'
121
122
123
124
125
126
127
        if args.data_loader != 'binary':
            print('Unsupported {} data loader for ALBERT.'.format(
                args.data_loader))
            exit(1)
        if not args.data_path:
            print('ALBERT only supports a unified dataset specified '
                  'with --data-path')
128
            exit(1)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

        data_parallel_size = mpu.get_data_parallel_world_size()
        data_parallel_rank = mpu.get_data_parallel_rank()
        global_batch_size = args.batch_size * data_parallel_size

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [args.train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

146
        assert len(args.data_path) == 1
147
148
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
            vocab_file=args.vocab,
149
            data_prefix=args.data_path[0],
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            data_impl=args.data_impl,
            splits_string=args.split,
            train_valid_test_num_samples=train_val_test_num_samples,
            max_seq_length=args.seq_length,
            masked_lm_prob=args.mask_prob,
            short_seq_prob=args.short_seq_prob,
            seed=args.seed,
            skip_warmup=args.skip_mmap_warmup)
        print_rank_0("> finished creating ALBERT datasets ...")

        def make_data_loader_(dataset):
            if not dataset:
                return None
            # Use a simple sampler with distributed batch sampler.
            sampler = torch.utils.data.SequentialSampler(dataset)
            batch_sampler = DistributedBatchSampler(
                sampler=sampler,
                batch_size=global_batch_size,
                drop_last=True,
                rank=data_parallel_rank,
                world_size=data_parallel_size)
            # Torch dataloader.
            return torch.utils.data.DataLoader(dataset,
                                               batch_sampler=batch_sampler,
                                               num_workers=args.num_workers,
                                               pin_memory=True)

        train_data = make_data_loader_(train_ds)
        valid_data = make_data_loader_(valid_ds)
        test_data = make_data_loader_(test_ds)

        do_train = train_data is not None and args.train_iters > 0
        do_valid = valid_data is not None and args.eval_iters > 0
        do_test = test_data is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        num_tokens = vocab_size_with_padding(train_ds.num_tokens(), args)
        token_counts = torch.cuda.LongTensor([num_tokens,
                                              2, # hard coded num_type_tokens
                                              int(do_train),
                                              int(do_valid),
                                              int(do_test)])
191
192
193
194
195
196
197
    else:
        token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(token_counts,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
198
199
    args.vocab_size = token_counts[0].item()
    args.tokentype_size = token_counts[1].item()
200
201
202
203
    args.do_train = token_counts[2].item()
    args.do_valid = token_counts[3].item()
    args.do_test = token_counts[4].item()

204
    return train_data, valid_data, test_data
205
206
207
208
209
210


if __name__ == "__main__":

    run('Pretrain BERT model', get_train_val_test_data,
        model_provider, forward_step)