"test/srt/test_nightly_math_eval.py" did not exist on "b8ccaf4d737a3c6a7965317a5eedddf3f4af903d"
pretrain_gpt.py 11.8 KB
Newer Older
liangjing's avatar
v1  
liangjing committed
1
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
xingjinliang's avatar
xingjinliang committed
2
"""Pretrain GPT."""
3

xingjinliang's avatar
xingjinliang committed
4
import os
5
import torch
6
from functools import partial
xingjinliang's avatar
xingjinliang committed
7
8
9
10
11
12
13
14
15
from contextlib import nullcontext
import inspect

from typing import List, Optional, Tuple, Union
from megatron.training import get_args
from megatron.training import print_rank_0
from megatron.training import get_timers
from megatron.training import get_tokenizer
from megatron.core import mpu
16
from megatron.core.enums import ModelType
xingjinliang's avatar
xingjinliang committed
17
18
19
20
21
22
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDatasetConfig
from megatron.core.datasets.gpt_dataset import MockGPTDataset, GPTDataset
from megatron.core.rerun_state_machine import get_rerun_state_machine
import megatron.legacy.model
from megatron.core.models.gpt import GPTModel
Mohammad's avatar
Mohammad committed
23
from megatron.training import pretrain
xingjinliang's avatar
xingjinliang committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from megatron.core.utils import StragglerDetector
from megatron.core.transformer.spec_utils import import_module
from megatron.training.utils import (
    get_batch_on_this_cp_rank,
    get_batch_on_this_tp_rank,
    get_blend_and_blend_per_split,
)
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.yaml_arguments import core_transformer_config_from_yaml
from megatron.core.models.gpt.gpt_layer_specs import (
    get_gpt_decoder_block_spec,
    get_gpt_layer_local_spec,
    get_gpt_layer_with_transformer_engine_spec,
)
wangxj's avatar
wangxj committed
38

xingjinliang's avatar
xingjinliang committed
39
40
41
42
43
44
45
46
47
48
49

stimer = StragglerDetector()

def model_provider(pre_process=True, post_process=True) -> Union[GPTModel, megatron.legacy.model.GPTModel]:
    """Builds the model.

    If you set the use_legacy_models to True, it will return the legacy GPT model and if not the mcore GPT model.

    Args:
        pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
        post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.
Mohammad's avatar
Mohammad committed
50

xingjinliang's avatar
xingjinliang committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64

    Returns:
        Union[GPTModel, megatron.legacy.model.GPTModel]: The returned model
    """
    args = get_args()
    use_te = args.transformer_impl == "transformer_engine"

    if args.record_memory_history:
        torch.cuda.memory._record_memory_history(True,
            # keep 100,000 alloc/free events from before the snapshot
            trace_alloc_max_entries=100000,

            # record stack information for the trace events
            trace_alloc_record_context=True)
65

wangxj's avatar
wangxj committed
66
67
68
69
70
71
72
73
74
        def oom_observer(device, alloc, device_alloc, device_free):
            # snapshot right after an OOM happened
            print('saving allocated state during OOM')
            snapshot = torch.cuda.memory._snapshot()
            from pickle import dump
            dump(snapshot, open(f"oom_rank-{torch.distributed.get_rank()}_{args.memory_snapshot_path}", 'wb'))

        torch._C._cuda_attach_out_of_memory_observer(oom_observer)

75
    print_rank_0('building GPT model ...')
xingjinliang's avatar
xingjinliang committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    # Experimental loading arguments from yaml
    if args.yaml_cfg is not None:
        config = core_transformer_config_from_yaml(args, "language_model")
    else:
        config = core_transformer_config_from_args(args)

    if args.use_legacy_models:
        model = megatron.legacy.model.GPTModel(
            config,
            num_tokentypes=0,
            parallel_output=True,
            pre_process=pre_process,
            post_process=post_process,
        )
    else: # using core models
        if args.spec is not None:
            transformer_layer_spec = import_module(args.spec)
        else:
            if args.num_experts:
                # Define the decoder block spec
                transformer_layer_spec = get_gpt_decoder_block_spec(config, use_transformer_engine=use_te)
            else:
                # Define the decoder layer spec
                if use_te:
                    transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(
                        args.num_experts, args.moe_grouped_gemm,
wangxj's avatar
wangxj committed
102
                        args.qk_layernorm, args.multi_latent_attention, args.moe_use_legacy_grouped_gemm)
xingjinliang's avatar
xingjinliang committed
103
104
105
                else:
                    transformer_layer_spec = get_gpt_layer_local_spec(
                        args.num_experts, args.moe_grouped_gemm,
wangxj's avatar
wangxj committed
106
                        args.qk_layernorm, args.multi_latent_attention, args.moe_use_legacy_grouped_gemm)
xingjinliang's avatar
xingjinliang committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

        build_model_context = nullcontext
        build_model_context_args = {}
        if args.fp8_param_gather:
            try:
                from transformer_engine.pytorch import fp8_model_init

                build_model_context = fp8_model_init
                build_model_context_args["enabled"] = True

                # Check if fp8_model_init supports preserve_high_precision_init_val
                if "preserve_high_precision_init_val" in inspect.signature(fp8_model_init).parameters:
                    build_model_context_args["preserve_high_precision_init_val"] = True
            except:
                raise RuntimeError("--fp8-param-gather requires `fp8_model_init` from TransformerEngine, but not found.")

        with build_model_context(**build_model_context_args):
            model = GPTModel(
                config=config,
                transformer_layer_spec=transformer_layer_spec,
                vocab_size=args.padded_vocab_size,
                max_sequence_length=args.max_position_embeddings,
                pre_process=pre_process,
                post_process=post_process,
                fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
                parallel_output=True,
                share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
                position_embedding_type=args.position_embedding_type,
                rotary_percent=args.rotary_percent,
                rotary_base=args.rotary_base,
                rope_scaling=args.use_rope_scaling
            )
wangxj's avatar
wangxj committed
139
140
141
    # model = torch.compile(model, mode="max-autotune-no-cudagraphs")
    print_rank_0(model)
    
142
143
144
    return model


Mohammad's avatar
Mohammad committed
145
def get_batch(data_iterator):
xingjinliang's avatar
xingjinliang committed
146
    """Generate a batch."""
147

xingjinliang's avatar
xingjinliang committed
148
149
150
    # TODO: this is pretty hacky, find a better way
    if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
        return None, None, None, None, None
151

xingjinliang's avatar
xingjinliang committed
152
153
154
155
156
157
158
    # get batches based on the TP rank you are on
    batch = get_batch_on_this_tp_rank(data_iterator)

    # slice batch along sequence dimension for context parallelism
    batch = get_batch_on_this_cp_rank(batch)

    return batch.values()
159
160


wangxj's avatar
wangxj committed
161
162
# define spiky loss as a loss that's 10x the max loss observed
SPIKY_LOSS_FACTOR = 10
163
164


xingjinliang's avatar
xingjinliang committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
    """Loss function.

    Args:
        loss_mask (torch.Tensor): Used to mask out some portions of the loss
        output_tensor (torch.Tensor): The tensor with the losses

    Returns:
        the loss scalar for this micro-batch
        the number of non-padded tokens in this microbatch
        a dict containing reporting metrics on the loss and number of tokens across
            the data parallel ranks
    """
    args = get_args()

180
181
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
xingjinliang's avatar
xingjinliang committed
182
183
184
185
186
    total_tokens = loss_mask.sum()
    loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), total_tokens.view(1)])

    if args.context_parallel_size > 1:
        torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
187

xingjinliang's avatar
xingjinliang committed
188
189
190
191
192
193
194
195
196
197
    # Check individual rank losses are not NaN prior to DP all-reduce.
    rerun_state_machine = get_rerun_state_machine()
    if args.check_for_nan_in_loss_and_grad:
        rerun_state_machine.validate_result(
            result=loss[0],
            rejection_func=torch.isnan,
            message="found NaN in local forward loss calculation",
            tolerance=0.0,        # forward pass calculations are determinisic
            fatal=True,
        )
wangxj's avatar
wangxj committed
198
199
200
201
202
203
204
        rerun_state_machine.validate_result(
            result=loss[0],
            rejection_func=torch.isinf,
            message="found Inf in local forward loss calculation",
            tolerance=0.0,        # forward pass calculations are determinisic
            fatal=True,
        )
xingjinliang's avatar
xingjinliang committed
205
206
207
208
    # Check for spiky loss
    if args.check_for_spiky_loss:
        rerun_state_machine.validate_result(
            result=loss[0],
wangxj's avatar
wangxj committed
209
210
211
212
213
            rejection_func=partial(
                rerun_state_machine.is_unexpectedly_large,
                threshold=SPIKY_LOSS_FACTOR,
                context="loss",
            ),
xingjinliang's avatar
xingjinliang committed
214
215
216
217
            message="Spiky loss",
            tolerance=0.0,        # forward pass calculations are determinisic
            fatal=False,
        )
218
    # Reduce loss for logging.
xingjinliang's avatar
xingjinliang committed
219
220
221
222
223
224
225
226
227
    reporting_loss = loss.clone().detach()
    torch.distributed.all_reduce(reporting_loss, group=mpu.get_data_parallel_group())

    local_num_tokens = loss[1].clone().detach().to(torch.int)
    return (
        loss[0] * args.context_parallel_size,
        local_num_tokens,
        {'lm loss': (reporting_loss[0], reporting_loss[1])},
    )
228
229


xingjinliang's avatar
xingjinliang committed
230
231
def forward_step(data_iterator, model: GPTModel):
    """Forward training step.
232

xingjinliang's avatar
xingjinliang committed
233
234
235
236
    Args:
        data_iterator : Input data iterator
        model (GPTModel): The GPT Model
    """
237
    args = get_args()
Mohammad's avatar
Mohammad committed
238
    timers = get_timers()
239
240

    # Get the batch.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
241
    timers('batch-generator', log_level=2).start()
xingjinliang's avatar
xingjinliang committed
242
243
244
245
    global stimer
    with stimer(bdata=True):
        tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
            data_iterator)
mohammad's avatar
mohammad committed
246
    timers('batch-generator').stop()
247

xingjinliang's avatar
xingjinliang committed
248
249
250
    with stimer:
        output_tensor = model(tokens, position_ids, attention_mask,
                              labels=labels)
251

252
    return output_tensor, partial(loss_func, loss_mask)
253
254


xingjinliang's avatar
xingjinliang committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def is_dataset_built_on_rank():
    return (
        mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()
    ) and mpu.get_tensor_model_parallel_rank() == 0


def core_gpt_dataset_config_from_args(args):
    tokenizer = get_tokenizer()

    # Sometimes --data-path is too long, instead we parse it from a file.
    blend: Optional[Tuple[List[str], Optional[List[float]]]]
    blend_per_split: Optional[List[Optional[Tuple[List[str], Optional[List[float]]]]]]
    blend, blend_per_split = get_blend_and_blend_per_split(args)

    return GPTDatasetConfig(
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend=blend,
        blend_per_split=blend_per_split,
        split=args.split,
        num_dataset_builder_threads=args.num_dataset_builder_threads,
        path_to_cache=args.data_cache_path,
        mmap_bin_files=args.mmap_bin_files,
        tokenizer=tokenizer,
        reset_position_ids=args.reset_position_ids,
        reset_attention_mask=args.reset_attention_mask,
        eod_mask_loss=args.eod_mask_loss,
        create_attention_mask=args.create_attention_mask_in_dataloader,
        s3_cache_path=args.s3_cache_path,
    )


287
def train_valid_test_datasets_provider(train_val_test_num_samples):
xingjinliang's avatar
xingjinliang committed
288
289
290
291
292
    """Build the train test and validation datasets.

    Args:
        train_val_test_num_samples : A list containing the number of samples in train test and validation.
    """
Mohammad's avatar
Mohammad committed
293
    args = get_args()
Mohammad's avatar
Mohammad committed
294

xingjinliang's avatar
xingjinliang committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    config = core_gpt_dataset_config_from_args(args)

    if args.mock_data:
        dataset_type = MockGPTDataset
    else:
        dataset_type = GPTDataset

    print_rank_0("> building train, validation, and test datasets for GPT ...")

    train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
        dataset_type,
        train_val_test_num_samples,
        is_dataset_built_on_rank,
        config
    ).build()

311
    print_rank_0("> finished creating GPT datasets ...")
312

313
    return train_ds, valid_ds, test_ds
314
315
316


if __name__ == "__main__":
317

xingjinliang's avatar
xingjinliang committed
318
319
320
321
322
323
324
325
326
327
    # Temporary for transition to core datasets
    train_valid_test_datasets_provider.is_distributed = True

    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
        ModelType.encoder_or_decoder,
        forward_step,
        args_defaults={'tokenizer_type': 'GPT2BPETokenizer'},
    )