attention.py 27.5 KB
Newer Older
liangjing's avatar
v1  
liangjing committed
1
2
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
from abc import ABC, abstractmethod
xingjinliang's avatar
xingjinliang committed
3
4
from dataclasses import dataclass
from typing import Tuple, Union
liangjing's avatar
v1  
liangjing committed
5
6

import torch
xingjinliang's avatar
xingjinliang committed
7
from torch import Tensor
liangjing's avatar
v1  
liangjing committed
8

xingjinliang's avatar
xingjinliang committed
9
10
11
12
13
14
15
16
17
18
19
20
from megatron.core import InferenceParams, parallel_state, tensor_parallel
from megatron.core.models.common.embeddings.rope_utils import (
    apply_rotary_pos_emb,
    apply_rotary_pos_emb_with_cos_sin,
)
from megatron.core.parallel_state import (
    get_data_parallel_group,
    get_data_parallel_rank,
    get_data_parallel_world_size,
    get_tensor_model_parallel_group,
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
liangjing's avatar
v1  
liangjing committed
21
22
)
from megatron.core.transformer.module import MegatronModule
xingjinliang's avatar
xingjinliang committed
23
from megatron.core.transformer.spec_utils import ModuleSpec, build_module
liangjing's avatar
v1  
liangjing committed
24
25
26
27
28
from megatron.core.utils import divide

from .enums import AttnMaskType
from .transformer_config import TransformerConfig

xingjinliang's avatar
xingjinliang committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
try:
    from flash_attn import flash_attn_with_kvcache
except:
    flash_attn_with_kvcache = None


try:
    import transformer_engine  # pylint: disable=unused-import

    HAVE_TE = True
    from megatron.core.extensions.transformer_engine import SplitAlongDim
except ImportError:
    HAVE_TE = False
    SplitAlongDim = None


@dataclass
class SelfAttentionSubmodules:
    """
    Configuration class for specifying the submodules of a self-attention.
    """

    linear_qkv: Union[ModuleSpec, type] = None
    core_attention: Union[ModuleSpec, type] = None
    linear_proj: Union[ModuleSpec, type] = None
    q_layernorm: Union[ModuleSpec, type] = None
    k_layernorm: Union[ModuleSpec, type] = None


@dataclass
class CrossAttentionSubmodules:
    """
    Configuration class for specifying the submodules of a cross-attention.
    """

    linear_q: Union[ModuleSpec, type] = None
    linear_kv: Union[ModuleSpec, type] = None
    core_attention: Union[ModuleSpec, type] = None
    linear_proj: Union[ModuleSpec, type] = None

liangjing's avatar
v1  
liangjing committed
69
70
71
72
73
74
75
76
77

class Attention(MegatronModule, ABC):
    """Attention layer abstract class.

    This layer only contains common modules required for the "self attn" and
    "cross attn" specializations.
    """

    def __init__(
xingjinliang's avatar
xingjinliang committed
78
79
80
81
82
83
84
        self,
        config: TransformerConfig,
        submodules: Union[SelfAttentionSubmodules, CrossAttentionSubmodules],
        layer_number: int,
        attn_mask_type: AttnMaskType,
        attention_type: str,
        cp_comm_type: str = None,
liangjing's avatar
v1  
liangjing committed
85
86
87
88
89
90
    ):
        super().__init__(config=config)

        self.config = config
        self.layer_number = layer_number
        self.attn_mask_type = attn_mask_type
xingjinliang's avatar
xingjinliang committed
91
        self.attention_type = attention_type
liangjing's avatar
v1  
liangjing committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        # For normal attention without groups, num_query_groups == num_attention_heads,
        # so these two will be the same
        self.query_projection_size = self.config.kv_channels * self.config.num_attention_heads
        self.kv_projection_size = self.config.kv_channels * self.config.num_query_groups

        # Per attention head and per partition values.
        world_size = parallel_state.get_tensor_model_parallel_world_size()
        self.hidden_size_per_attention_head = divide(
            self.query_projection_size, self.config.num_attention_heads
        )
        self.num_attention_heads_per_partition = divide(self.config.num_attention_heads, world_size)
        self.num_query_groups_per_partition = divide(self.config.num_query_groups, world_size)

wangxj's avatar
wangxj committed
106
107
108
109
        # To support both CUDA Graphs and key value with different hidden size
        self.key_hidden_size = self.hidden_size_per_attention_head
        self.val_hidden_size = self.hidden_size_per_attention_head

xingjinliang's avatar
xingjinliang committed
110
111
112
113
114
115
116
        self.core_attention = build_module(
            submodules.core_attention,
            config=self.config,
            layer_number=self.layer_number,
            attn_mask_type=self.attn_mask_type,
            attention_type=self.attention_type,
            cp_comm_type=cp_comm_type,
wangxj's avatar
wangxj committed
117
            softmax_scale=self.config.softmax_scale,
liangjing's avatar
v1  
liangjing committed
118
119
        )

xingjinliang's avatar
xingjinliang committed
120
        self.checkpoint_core_attention = self.config.recompute_granularity == 'selective'
liangjing's avatar
v1  
liangjing committed
121
122

        # Output.
xingjinliang's avatar
xingjinliang committed
123
124
        self.linear_proj = build_module(
            submodules.linear_proj,
liangjing's avatar
v1  
liangjing committed
125
126
127
128
129
            self.query_projection_size,
            self.config.hidden_size,
            config=self.config,
            init_method=self.config.output_layer_init_method,
            bias=self.config.add_bias_linear,
xingjinliang's avatar
xingjinliang committed
130
            input_is_parallel=True,
liangjing's avatar
v1  
liangjing committed
131
            skip_bias_add=True,
xingjinliang's avatar
xingjinliang committed
132
133
            is_expert=False,
            tp_comm_buffer_name='proj',
liangjing's avatar
v1  
liangjing committed
134
135
136
        )

    def _checkpointed_attention_forward(
xingjinliang's avatar
xingjinliang committed
137
138
139
140
141
142
143
144
145
        self,
        query,
        key,
        value,
        attention_mask,
        rotary_pos_emb=None,
        attn_mask_type=None,
        attention_bias=None,
        packed_seq_params=None,
liangjing's avatar
v1  
liangjing committed
146
147
148
149
150
151
152
153
    ):
        """Forward method with selective activation checkpointing."""

        def custom_forward(*inputs):
            query = inputs[0]
            key = inputs[1]
            value = inputs[2]
            attention_mask = inputs[3]
xingjinliang's avatar
xingjinliang committed
154
155
156
157
158
159
160
161
162
163
164
            attn_mask_type = inputs[5]
            attn_mask_type = AttnMaskType(attn_mask_type.item())
            output_ = self.core_attention(
                query,
                key,
                value,
                attention_mask,
                attn_mask_type=attn_mask_type,
                attention_bias=attention_bias,
                packed_seq_params=packed_seq_params,
            )
liangjing's avatar
v1  
liangjing committed
165
166
            return output_

xingjinliang's avatar
xingjinliang committed
167
168
169
        if attn_mask_type is None:
            attn_mask_type = self.attn_mask_type
        attn_mask_type = torch.tensor([attn_mask_type.value], dtype=torch.int)
liangjing's avatar
v1  
liangjing committed
170
        hidden_states = tensor_parallel.checkpoint(
xingjinliang's avatar
xingjinliang committed
171
            custom_forward, False, query, key, value, attention_mask, rotary_pos_emb, attn_mask_type
liangjing's avatar
v1  
liangjing committed
172
173
174
175
        )

        return hidden_states

xingjinliang's avatar
xingjinliang committed
176
    def _allocate_memory(self, inference_max_sequence_length, batch_size, dim, dtype):
liangjing's avatar
v1  
liangjing committed
177
178
179
180
181
182
        """Allocate memory to store kv cache during inference."""

        return torch.empty(
            inference_max_sequence_length,
            batch_size,
            self.num_query_groups_per_partition,
xingjinliang's avatar
xingjinliang committed
183
            dim,
liangjing's avatar
v1  
liangjing committed
184
185
186
187
            dtype=dtype,
            device=torch.cuda.current_device(),
        )

xingjinliang's avatar
xingjinliang committed
188
189
190
191
192
193
194
195
196
    def _adjust_key_value_for_inference(
        self,
        inference_params: InferenceParams,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        rotary_pos_emb: Tensor,
        rotary_pos_cos: Tensor = None,
        rotary_pos_sin: Tensor = None,
wangxj's avatar
wangxj committed
197
        sequence_len_offset=None,
xingjinliang's avatar
xingjinliang committed
198
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
liangjing's avatar
v1  
liangjing committed
199
200
201
202
203
204
205
206
        """
        Saves the generated key and value tensors to the end of the buffers in inference_params.
        Returns the full size keys and values from the provided inference_params, as well as
        adjusted rotary_pos_emb.

        Returns a tuple: (key, value, rotary_pos_emb)

        """
xingjinliang's avatar
xingjinliang committed
207
        attn_mask_type = self.attn_mask_type
liangjing's avatar
v1  
liangjing committed
208
        if inference_params is None:
xingjinliang's avatar
xingjinliang committed
209
            return query, key, value, rotary_pos_emb, attn_mask_type
liangjing's avatar
v1  
liangjing committed
210
211
212
213
214
215
216
217

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
        if self.layer_number not in inference_params.key_value_memory_dict:
            inf_max_seq_length = inference_params.max_sequence_length
            inf_max_batch_size = inference_params.max_batch_size
            inference_key_memory = self._allocate_memory(
wangxj's avatar
wangxj committed
218
                inf_max_seq_length, inf_max_batch_size, self.key_hidden_size, key.dtype
liangjing's avatar
v1  
liangjing committed
219
220
            )
            inference_value_memory = self._allocate_memory(
wangxj's avatar
wangxj committed
221
                inf_max_seq_length, inf_max_batch_size, self.val_hidden_size, value.dtype
liangjing's avatar
v1  
liangjing committed
222
223
224
225
226
227
228
229
230
231
232
            )
            inference_params.key_value_memory_dict[self.layer_number] = (
                inference_key_memory,
                inference_value_memory,
            )
        else:
            # Get the pre-allocated buffers for this layer
            inference_key_memory, inference_value_memory = inference_params.key_value_memory_dict[
                self.layer_number
            ]

xingjinliang's avatar
xingjinliang committed
233
234
235
236
237
        if inference_params.sequence_len_offset > 0:
            # This should mean that we are past the prompt forward_step
            # and so we need to turn off masking
            attn_mask_type = AttnMaskType.no_mask

liangjing's avatar
v1  
liangjing committed
238
239
240
241
242
        batch_start = inference_params.batch_size_offset
        batch_end = batch_start + key.size(1)
        assert batch_end <= inference_key_memory.size(1)
        sequence_start = inference_params.sequence_len_offset
        sequence_end = sequence_start + key.size(0)
wangxj's avatar
wangxj committed
243
244
245
246
        assert sequence_end <= inference_key_memory.size(0), (
            "Current sequence length is longer than expected maximum sequence length! "
            "Increase inference_max_seq_length."
        )
xingjinliang's avatar
xingjinliang committed
247
248
249
250
251
252
253
254
255
256

        if self.config.flash_decode:
            assert (
                rotary_pos_cos is not None and rotary_pos_sin is not None
            ), "Flash decoding requires precomputed cos and sin tensors"
            if inference_params.sequence_len_offset > 0:  # Decode phase, not prefill
                rotary_pos_cos_q = rotary_pos_cos[sequence_end - 1 : sequence_end]
                rotary_pos_sin_q = rotary_pos_sin[sequence_end - 1 : sequence_end]
                rotary_pos_cos_k = rotary_pos_cos[sequence_end - 1 : sequence_end]
                rotary_pos_sin_k = rotary_pos_sin[sequence_end - 1 : sequence_end]
wangxj's avatar
wangxj committed
257
            else:  # Prefill
xingjinliang's avatar
xingjinliang committed
258
259
260
261
262
263
264
265
266
267
268
269
270
                rotary_pos_cos_q = rotary_pos_cos[:sequence_end]
                rotary_pos_sin_q = rotary_pos_sin[:sequence_end]
                rotary_pos_cos_k = rotary_pos_cos[:sequence_end]
                rotary_pos_sin_k = rotary_pos_sin[:sequence_end]

            # Flash Decoding assumes that the keys stored in the KV Cache already have RoPE applied.
            # Apply RoPE before we store the keys to make it compatible with flash decoding kernel.
            key = apply_rotary_pos_emb_with_cos_sin(key, rotary_pos_cos_k, rotary_pos_sin_k)
            query = apply_rotary_pos_emb_with_cos_sin(query, rotary_pos_cos_q, rotary_pos_sin_q)
        else:
            rotary_pos_cos_q = None
            rotary_pos_sin_q = None

liangjing's avatar
v1  
liangjing committed
271
272
273
274
275
276
277
        # Copy key and values.
        inference_key_memory[sequence_start:sequence_end, batch_start:batch_end, ...] = key
        inference_value_memory[sequence_start:sequence_end, batch_start:batch_end, ...] = value
        key = inference_key_memory[:sequence_end, batch_start:batch_end, ...]
        value = inference_value_memory[:sequence_end, batch_start:batch_end, ...]

        # adjust the key rotary positional embedding
xingjinliang's avatar
xingjinliang committed
278
279
280
281
282
283
284
        if rotary_pos_emb is None:
            return query, key, value, rotary_pos_emb, attn_mask_type

        q_pos_emb, k_pos_emb = rotary_pos_emb
        q_pos_emb = q_pos_emb[sequence_start:sequence_end, :, :, :]
        k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
        rotary_pos_emb = (q_pos_emb, k_pos_emb)
liangjing's avatar
v1  
liangjing committed
285

xingjinliang's avatar
xingjinliang committed
286
        return query, key, value, rotary_pos_emb, attn_mask_type
liangjing's avatar
v1  
liangjing committed
287
288
289
290
291
292
293
294

    @abstractmethod
    def get_query_key_value_tensors(self, hidden_states, key_value_states):
        """
        This method needs to be implemented based on whether the derived class
        is "self-attn" or "cross-attn".
        """

xingjinliang's avatar
xingjinliang committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def flash_decoding(
        self,
        sequence_len_offset: Tensor,
        query_layer: Tensor,
        key_layer: Tensor,
        value_layer: Tensor,
        inference_key_memory: Tensor,
        inference_value_memory: Tensor,
        rotary_cos: Tensor,
        rotary_sin: Tensor,
    ) -> (Tensor, Tensor):
        """
        The flash decoding kernel will do the following in a single execution:
        1. Compute RoPE embedding with precomputed cos & sin tensors
        2. Update the KV Cache
        3. Performs the flash attention operation
        """
        assert flash_attn_with_kvcache is not None, (
            "Flash Decoding requires the flash_attn_with_kvcache kernel, "
            "available in the flash-attn package."
        )
        cache_seqlens = sequence_len_offset - 1
        q = query_layer.permute(1, 0, 2, 3)
        k = key_layer.permute(1, 0, 2, 3)
        v = value_layer.permute(1, 0, 2, 3)
        k_cache = inference_key_memory.permute(1, 0, 2, 3)
        v_cache = inference_value_memory.permute(1, 0, 2, 3)

        if rotary_cos is not None:
            rotary_cos = rotary_cos.to(query_layer.dtype)
        if rotary_sin is not None:
            rotary_sin = rotary_sin.to(query_layer.dtype)

        out = flash_attn_with_kvcache(
            q=q,
            k_cache=k_cache,
            v_cache=v_cache,
            k=k,
            v=v,
            rotary_cos=rotary_cos,
            rotary_sin=rotary_sin,
            cache_seqlens=cache_seqlens,
            rotary_interleaved=False,
        )
        return out

liangjing's avatar
v1  
liangjing committed
341
342
343
344
345
346
347
    def forward(
        self,
        hidden_states,
        attention_mask,
        key_value_states=None,
        inference_params=None,
        rotary_pos_emb=None,
xingjinliang's avatar
xingjinliang committed
348
349
350
351
        rotary_pos_cos=None,
        rotary_pos_sin=None,
        attention_bias=None,
        packed_seq_params=None,
wangxj's avatar
wangxj committed
352
        sequence_len_offset=None,
liangjing's avatar
v1  
liangjing committed
353
    ):
xingjinliang's avatar
xingjinliang committed
354
355
356
357
        """
        Perform a forward pass through the attention module.
        """

liangjing's avatar
v1  
liangjing committed
358
        # hidden_states: [sq, b, h]
xingjinliang's avatar
xingjinliang committed
359
360
361
362
        if self.config.flash_decode:
            rotary_pos_emb = None
        else:
            assert rotary_pos_cos is None and rotary_pos_sin is None
liangjing's avatar
v1  
liangjing committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

        # For self attention we just duplicate the rotary_pos_emb if it isn't already
        if rotary_pos_emb is not None and not isinstance(rotary_pos_emb, tuple):
            rotary_pos_emb = (rotary_pos_emb,) * 2

        # =====================
        # Query, Key, and Value
        # =====================
        # Get the query, key and value tensors based on the type of attention -
        # self or cross attn.
        query, key, value = self.get_query_key_value_tensors(hidden_states, key_value_states)

        # ===================================================
        # Adjust key, value, and rotary_pos_emb for inference
        # ===================================================
xingjinliang's avatar
xingjinliang committed
378
379
380
381
382
383

        # This branch only runs in the decode phase of flash decoding and returns after the linear
        # projection. This conditional is not used in the prefill phase or non-flash-decoding cases.
        if (
            self.config.flash_decode
            and inference_params is not None
wangxj's avatar
wangxj committed
384
            and inference_params.decode_mode
xingjinliang's avatar
xingjinliang committed
385
        ):
wangxj's avatar
wangxj committed
386
            assert self.layer_number in inference_params.key_value_memory_dict
xingjinliang's avatar
xingjinliang committed
387
388
389
390
391
            assert inference_params.sequence_len_offset is not None
            inference_key_memory, inference_value_memory = inference_params.key_value_memory_dict[
                self.layer_number
            ]
            output = self.flash_decoding(
wangxj's avatar
wangxj committed
392
                sequence_len_offset=sequence_len_offset,
xingjinliang's avatar
xingjinliang committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
                query_layer=query,
                key_layer=key,
                value_layer=value,
                inference_key_memory=inference_key_memory,
                inference_value_memory=inference_value_memory,
                rotary_cos=rotary_pos_cos,
                rotary_sin=rotary_pos_sin,
            )
            out = output.transpose(0, 1).contiguous()
            context_layer = out.view(out.size(0), out.size(1), -1)
            output, bias = self.linear_proj(context_layer)
            return output, bias

        query, key, value, rotary_pos_emb, attn_mask_type = self._adjust_key_value_for_inference(
wangxj's avatar
wangxj committed
407
408
409
410
411
412
413
414
            inference_params,
            query,
            key,
            value,
            rotary_pos_emb,
            rotary_pos_cos,
            rotary_pos_sin,
            sequence_len_offset,
liangjing's avatar
v1  
liangjing committed
415
416
        )

xingjinliang's avatar
xingjinliang committed
417
418
419
420
421
        if packed_seq_params is not None:
            query = query.squeeze(1)
            key = key.squeeze(1)
            value = value.squeeze(1)

liangjing's avatar
v1  
liangjing committed
422
423
424
        # ================================================
        # relative positional embedding (rotary embedding)
        # ================================================
xingjinliang's avatar
xingjinliang committed
425
        if rotary_pos_emb is not None and not self.config.flash_decode:
liangjing's avatar
v1  
liangjing committed
426
            q_pos_emb, k_pos_emb = rotary_pos_emb
xingjinliang's avatar
xingjinliang committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

            if packed_seq_params is not None:
                if packed_seq_params.cu_seqlens_q_padded is not None:
                    cu_seqlens_q = packed_seq_params.cu_seqlens_q_padded
                else:
                    cu_seqlens_q = packed_seq_params.cu_seqlens_q
                if packed_seq_params.cu_seqlens_kv_padded is not None:
                    cu_seqlens_kv = packed_seq_params.cu_seqlens_kv_padded
                else:
                    cu_seqlens_kv = packed_seq_params.cu_seqlens_kv
            else:
                cu_seqlens_q = cu_seqlens_kv = None
            query = apply_rotary_pos_emb(
                query, q_pos_emb, config=self.config, cu_seqlens=cu_seqlens_q
            )
            key = apply_rotary_pos_emb(key, k_pos_emb, config=self.config, cu_seqlens=cu_seqlens_kv)

liangjing's avatar
v1  
liangjing committed
444
445
446
447
448
449
450
451
452
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

        # ==================================
        # core attention computation
        # ==================================

xingjinliang's avatar
xingjinliang committed
453
454
455
456
457
458
459
460
461
        if self.checkpoint_core_attention and self.training:
            core_attn_out = self._checkpointed_attention_forward(
                query,
                key,
                value,
                attention_mask,
                attn_mask_type=attn_mask_type,
                attention_bias=attention_bias,
                packed_seq_params=packed_seq_params,
liangjing's avatar
v1  
liangjing committed
462
            )
xingjinliang's avatar
xingjinliang committed
463
464
465
466
467
468
469
470
471
        else:
            core_attn_out = self.core_attention(
                query,
                key,
                value,
                attention_mask,
                attn_mask_type=attn_mask_type,
                attention_bias=attention_bias,
                packed_seq_params=packed_seq_params,
liangjing's avatar
v1  
liangjing committed
472
473
            )

xingjinliang's avatar
xingjinliang committed
474
475
476
477
478
479
        if packed_seq_params is not None and packed_seq_params.qkv_format == 'thd':
            # reshape to same output shape as unpacked case
            # (t, np, hn) -> (t, b=1, h=np*hn)
            # t is the pack size = sum (sq_i)
            # note that batch is a dummy dimension in the packed case
            core_attn_out = core_attn_out.reshape(core_attn_out.size(0), 1, -1)
liangjing's avatar
v1  
liangjing committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

        # =================
        # Output. [sq, b, h]
        # =================

        output, bias = self.linear_proj(core_attn_out)

        return output, bias


class SelfAttention(Attention):
    """Self-attention layer class

    Self-attention layer takes input with size [s, b, h]
    and returns output of the same size.
    """

    def __init__(
xingjinliang's avatar
xingjinliang committed
498
499
500
501
502
503
        self,
        config: TransformerConfig,
        submodules: SelfAttentionSubmodules,
        layer_number: int,
        attn_mask_type=AttnMaskType.padding,
        cp_comm_type: str = None,
liangjing's avatar
v1  
liangjing committed
504
    ):
xingjinliang's avatar
xingjinliang committed
505
506
507
508
509
510
511
512
        super().__init__(
            config=config,
            submodules=submodules,
            layer_number=layer_number,
            attn_mask_type=attn_mask_type,
            attention_type="self",
            cp_comm_type=cp_comm_type,
        )
liangjing's avatar
v1  
liangjing committed
513

xingjinliang's avatar
xingjinliang committed
514
515
        self.linear_qkv = build_module(
            submodules.linear_qkv,
liangjing's avatar
v1  
liangjing committed
516
517
518
519
            self.config.hidden_size,
            self.query_projection_size + 2 * self.kv_projection_size,
            config=self.config,
            init_method=self.config.init_method,
xingjinliang's avatar
xingjinliang committed
520
521
            gather_output=False,
            bias=self.config.add_bias_linear or self.config.add_qkv_bias,
liangjing's avatar
v1  
liangjing committed
522
            skip_bias_add=False,
xingjinliang's avatar
xingjinliang committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            is_expert=False,
            tp_comm_buffer_name='qkv',
        )

        if submodules.q_layernorm is not None:
            self.q_layernorm = build_module(
                submodules.q_layernorm,
                hidden_size=self.hidden_size_per_attention_head,
                config=self.config,
                eps=self.config.layernorm_epsilon,
            )
        else:
            self.q_layernorm = None

        if submodules.k_layernorm is not None:
            self.k_layernorm = build_module(
                submodules.k_layernorm,
                hidden_size=self.hidden_size_per_attention_head,
                config=self.config,
                eps=self.config.layernorm_epsilon,
            )
        else:
            self.k_layernorm = None

    def run_realtime_tests(self):
        """Performs a consistency check.

        This function makes sure that tensors across devices are the same during an experiment.
        This is often not guaranteed to be so because of silent hardware failures (eg, memory
        corruption loading a checkpoint, network traffic corruption encountered during
        data transmission).

        (TODO) In the future, more tensors should be checked across the training run and
        checked every X iterations. This is left for future work. Equality of tensors is probably
        not required; transmitting hashes is sufficient."""

        if not self.config.qk_layernorm:
            return

        # check that all tensor parallel and data parallel ranks have the same
        # Q & K layernorm parameters.
        rank = get_data_parallel_rank()
        inputs = torch.stack(
            [
                self.q_layernorm.weight.data,
                self.q_layernorm.bias.data,
                self.k_layernorm.weight.data,
                self.k_layernorm.bias.data,
            ]
liangjing's avatar
v1  
liangjing committed
572
        )
xingjinliang's avatar
xingjinliang committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        dp_list = [torch.empty_like(inputs) for _ in range(get_data_parallel_world_size())]
        dp_list[rank] = inputs
        torch.distributed.all_gather(dp_list, inputs, group=get_data_parallel_group())

        def _compare(srcs, tgts, names, parallelism):
            assert len(srcs) == len(tgts) == len(names)
            for src, tgt, name in zip(srcs, tgts, names):
                assert torch.all(src == tgt), (
                    f"Discrepancy between {name} in {parallelism} ranks {i} and {rank}. "
                    f"Diff: {torch.norm(src - tgt)}"
                )

        for i, dp in enumerate(dp_list):
            q_w, q_b, k_w, k_b = torch.unbind(dp)
            _compare(
                [q_w, q_b, k_w, k_b],
                [
                    self.q_layernorm.weight.data,
                    self.q_layernorm.bias.data,
                    self.k_layernorm.weight.data,
                    self.k_layernorm.bias.data,
                ],
                ["q_w", "q_b", "k_w", "k_b"],
                "DP",
            )

        rank = get_tensor_model_parallel_rank()
        tp_list = [torch.empty_like(inputs) for _ in range(get_tensor_model_parallel_world_size())]
        tp_list[rank] = inputs
        torch.distributed.all_gather(tp_list, inputs, group=get_tensor_model_parallel_group())

        for i, tp in enumerate(tp_list):
            q_w, q_b, k_w, k_b = torch.unbind(tp)
            _compare(
                [q_w, q_b, k_w, k_b],
                [
                    self.q_layernorm.weight.data,
                    self.q_layernorm.bias.data,
                    self.k_layernorm.weight.data,
                    self.k_layernorm.bias.data,
                ],
                ["q_w", "q_b", "k_w", "k_b"],
                "TP",
            )
liangjing's avatar
v1  
liangjing committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

    def get_query_key_value_tensors(self, hidden_states, key_value_states=None):
        """
        Derives `query`, `key` and `value` tensors from `hidden_states`.
        """
        # Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)]
        mixed_qkv, _ = self.linear_qkv(hidden_states)

        # [sq, b, hp] --> [sq, b, ng, (np/ng + 2) * hn]
        new_tensor_shape = mixed_qkv.size()[:-1] + (
            self.num_query_groups_per_partition,
            (
                (self.num_attention_heads_per_partition // self.num_query_groups_per_partition + 2)
                * self.hidden_size_per_attention_head
            ),
        )
        mixed_qkv = mixed_qkv.view(*new_tensor_shape)

xingjinliang's avatar
xingjinliang committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
        split_arg_list = [
            (
                self.num_attention_heads_per_partition
                // self.num_query_groups_per_partition
                * self.hidden_size_per_attention_head
            ),
            self.hidden_size_per_attention_head,
            self.hidden_size_per_attention_head,
        ]

        if SplitAlongDim is not None:

            # [sq, b, ng, (np/ng + 2) * hn]
            # --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
            (query, key, value) = SplitAlongDim(mixed_qkv, 3, split_arg_list)
        else:

            # [sq, b, ng, (np/ng + 2) * hn]
            # --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
            (query, key, value) = torch.split(mixed_qkv, split_arg_list, dim=3)

liangjing's avatar
v1  
liangjing committed
656
657
658
        # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn]
        query = query.reshape(query.size(0), query.size(1), -1, self.hidden_size_per_attention_head)

xingjinliang's avatar
xingjinliang committed
659
660
661
662
663
664
665
666
667
        if self.q_layernorm is not None:
            query = self.q_layernorm(query)

        if self.k_layernorm is not None:
            key = self.k_layernorm(key)

        if self.config.test_mode:
            self.run_realtime_tests()

liangjing's avatar
v1  
liangjing committed
668
669
670
671
672
673
674
675
676
677
678
        return query, key, value


class CrossAttention(Attention):
    """Cross-attention layer class

    Cross-attention layer takes input with size [s, b, h] and context with size
    [s, b, h] and returns output of the same size.
    """

    def __init__(
xingjinliang's avatar
xingjinliang committed
679
680
681
682
683
684
        self,
        config: TransformerConfig,
        submodules: CrossAttentionSubmodules,
        layer_number: int,
        attn_mask_type=AttnMaskType.padding,
        cp_comm_type: str = None,
liangjing's avatar
v1  
liangjing committed
685
    ):
xingjinliang's avatar
xingjinliang committed
686
687
688
689
690
691
692
693
        super().__init__(
            config=config,
            submodules=submodules,
            layer_number=layer_number,
            attn_mask_type=attn_mask_type,
            attention_type="cross",
            cp_comm_type=cp_comm_type,
        )
liangjing's avatar
v1  
liangjing committed
694
695

        if self.config.num_query_groups != self.config.num_attention_heads:
xingjinliang's avatar
xingjinliang committed
696
            raise ValueError("Group query attention is not currently supported in cross attention.")
liangjing's avatar
v1  
liangjing committed
697
698
        assert self.query_projection_size == self.kv_projection_size

xingjinliang's avatar
xingjinliang committed
699
700
        self.linear_q = build_module(
            submodules.linear_q,
liangjing's avatar
v1  
liangjing committed
701
702
703
704
            self.config.hidden_size,
            self.query_projection_size,
            config=self.config,
            init_method=self.config.init_method,
xingjinliang's avatar
xingjinliang committed
705
            gather_output=False,
liangjing's avatar
v1  
liangjing committed
706
707
            bias=self.config.add_bias_linear,
            skip_bias_add=False,
xingjinliang's avatar
xingjinliang committed
708
            is_expert=False,
liangjing's avatar
v1  
liangjing committed
709
710
        )

xingjinliang's avatar
xingjinliang committed
711
712
        self.linear_kv = build_module(
            submodules.linear_kv,
liangjing's avatar
v1  
liangjing committed
713
714
715
716
            self.config.hidden_size,
            2 * self.kv_projection_size,
            config=self.config,
            init_method=self.config.init_method,
xingjinliang's avatar
xingjinliang committed
717
            gather_output=False,
liangjing's avatar
v1  
liangjing committed
718
719
            bias=self.config.add_bias_linear,
            skip_bias_add=False,
xingjinliang's avatar
xingjinliang committed
720
            is_expert=False,
liangjing's avatar
v1  
liangjing committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        )

    def get_query_key_value_tensors(self, hidden_states, key_value_states):
        """
        Derives `query` tensor from `hidden_states`, and `key`/`value` tensors
        from `key_value_states`.
        """
        # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
        mixed_kv, _ = self.linear_kv(key_value_states)

        # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
        new_tensor_shape = mixed_kv.size()[:-1] + (
            self.num_attention_heads_per_partition,
            2 * self.hidden_size_per_attention_head,
        )
        mixed_kv = mixed_kv.view(*new_tensor_shape)

        # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
        (key, value) = tensor_parallel.split_tensor_along_last_dim(mixed_kv, 2)

        # Attention head [sq, b, h] --> [sq, b, hp]
        query, _ = self.linear_q(hidden_states)

        # [sq, b, hp] --> [sq, b, np, hn]
        new_tensor_shape = query.size()[:-1] + (
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
        )
        query = query.view(*new_tensor_shape)

        return query, key, value