optimizer_config.py 7.25 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

from dataclasses import dataclass
from typing import Callable, Optional

import torch


@dataclass
class OptimizerConfig:
    """Configuration for optimizer."""

    ##############
    # General
    ##############
    optimizer: str = 'adam'
    """Optimizer to use (one of Adam or SGD)."""

    lr: Optional[float] = None
    """Initial learning rate. Depending on decay style and initial warmup, the learning rate at each
       iteration would be different.
    """

    min_lr: Optional[float] = None
    """Minumum value for learning rate. The scheduler clip values below this threshold."""

    decoupled_lr: Optional[float] = None
    """Separate learning rate for the input and output layer."""

    decoupled_min_lr: Optional[float] = None
    """Minimum value for learning rate for the input and output layer. The scheduler clip values
       below this threshold.
    """

    weight_decay: float = 0.01
    """Weight decay coefficient for L2 regularization."""

    ##############
    # Precision
    ##############
    fp16: bool = False
    """If true, train with fp16 mixed precision training. Defaults to False."""

    bf16: bool = False
    """If true, train with bf16 mixed precision training. Defaults to False."""

    params_dtype: torch.dtype = torch.float32
    """dtype used when intializing the weights. Defaults to torch.float32."""

wangxj's avatar
wangxj committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    use_precision_aware_optimizer: bool = False
    """If true, allows optimizer-related tensors (master_param, gradients and optimizer states)
    to be set to lower precision. Defaults to False.
    """

    main_grads_dtype: torch.dtype = torch.float32
    """dtype of main grads when enabling precision-aware-optimizer"""

    main_params_dtype: torch.dtype = torch.float32
    """dtype of main params when enabling precision-aware-optimizer"""

    exp_avg_dtype: torch.dtype = torch.float32
    """dtype of exp_avg when enabling precision-aware-optimizer"""

    exp_avg_sq_dtype: torch.dtype = torch.float32
    """dtype of exp_avg_sq when enabling precision-aware-optimizer"""

xingjinliang's avatar
xingjinliang committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    ###############
    # Loss scaling
    ###############
    loss_scale: Optional[float] = None
    """Static loss scaling, positive power of 2 values can improve fp16 convergence. If None,
       dynamic loss scaling is used.
    """

    initial_loss_scale: float = 2**32
    """Initial loss-scale for dynamic loss scaling."""

    min_loss_scale: float = 1.0
    """Minimum loss scale for dynamic loss scaling."""

    loss_scale_window: float = 1000
    """Window over which to raise/lower dynamic scale."""

    hysteresis: int = 2
    """Hysteresis for dynamic loss scaling."""

    ##############
    # Optimizer
    ##############
    # Adam
    adam_beta1: float = 0.9
    """First coefficient for computing running averages of gradient and its square in Adam
    optimizer.
    """

    adam_beta2: float = 0.999
    """Second coefficient for computing running averages of gradient and its square in Adam
    optimizer.
    """

    adam_eps: float = 1e-08
    """Term added to the denominator to improve numerical stability in Adam optimizer."""

    # SGD.
    sgd_momentum: float = 0.9
    """Momentum factor for SGD optimizer."""

    #######################
    # Distributed optimizer
    #######################
    use_distributed_optimizer: bool = False
    """Distribute optimizer state over data-parallel replicas."""

    overlap_param_gather_with_optimizer_step: bool = False
    """If true, overlap param all-gather of first bucket with optimizer step."""

wangxj's avatar
wangxj committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    #######################
    # Optimizer Offload
    #######################

    optimizer_cpu_offload: bool = False
    """If True, offload optimizer states tensor and compute to CPU."""

    optimizer_offload_fraction: float = 0.0
    """Specifies the fraction of optimizer states to offload from GPU memory to CPU."""

    use_torch_optimizer_for_cpu_offload: bool = False
    """If True, use torch.optim.Optimizer for CPU offload."""

    overlap_cpu_optimizer_d2h_h2d: bool = False
    """
    When set to `True`, this flag enables overlapping of the CPU optimizer
    update process with the data transfer operations. This can help improve
    overall training efficiency by reducing idle time during data movement,
    allowing the optimizer to perform updates while gradients and parameters
    are being transferred between devices.
    """

    pin_cpu_grads: bool = True
    """If True, pin the optimizer gradients to CPU memory."""

    pin_cpu_params: bool = True
    """If True, pin the optimizer parameters to CPU memory."""

xingjinliang's avatar
xingjinliang committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    ################
    # Miscellaneous
    ################
    clip_grad: float = 1.0
    """Gradient clipping based on global L2 norm."""

    log_num_zeros_in_grad: bool = False
    """If true, calculate and log the number of zeros in gradient."""

    barrier_with_L1_time: bool = False
    """If true, use barrier with level 1 time measurements."""

    timers: Callable = None
    """Function to get timers."""

    config_logger_dir: str = ""
    """When non-empty, dumps entry-point configs to config_logger_dir"""
wangxj's avatar
wangxj committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    def __post_init__(self):
        """Check the validity of the config."""
        if self.use_precision_aware_optimizer:
            assert (
                self.optimizer == 'adam'
            ), '--use-precision-aware-optimizer only supported with adam'
            assert (
                self.use_distributed_optimizer
            ), '--use-precision-aware-optimizer only supported with distributed optimizer'

            # Only the FusedAdam in TE and HybridDeviceOptimizer supports
            # --use-precision-aware-optimizer.
            # TODO: Remove this check when apex's FusedAdam is no longer used.
            if self.optimizer_cpu_offload:
                return
            try:
                import inspect

                from transformer_engine.pytorch.optimizers import FusedAdam as Adam

                adam_args = inspect.signature(Adam).parameters
                arg_names = [
                    'master_weight_dtype',
                    'exp_avg_dtype',
                    'exp_avg_sq_dtype',
                    'use_decoupled_grad',
                ]
                for name in arg_names:
                    assert name in adam_args, (
                        "Current FusedAdam of TE doesn't support --use-precision-aware-optimizer, "
                        "please update TE version."
                    )
            except ImportError:
                raise RuntimeError(
                    '--use-precision-aware-optimizer requires FusedAdam from TransformerEngine, '
                    'but not found.'
                )
        else:
            assert (
                self.main_grads_dtype == torch.float32
            ), "main_grads_dtype can only be fp32 when not using precision-aware optimizer"
            assert (
                self.main_params_dtype == torch.float32
            ), "main_params_dtype can only be fp32 when not using precision-aware optimizer"
            assert (
                self.exp_avg_dtype == torch.float32
            ), "exp_avg_dtype can only be fp32 when not using precision-aware optimizer"
            assert (
                self.exp_avg_sq_dtype == torch.float32
            ), "exp_avg_sq_dtype can only be fp32 when not using precision-aware optimizer"