radio.py 11.8 KB
Newer Older
wangxj's avatar
wangxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

import math
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn

from megatron.core.config_logger import has_config_logger_enabled, log_config_to_disk
from megatron.core.models.common.vision_module.vision_module import VisionModule
from megatron.core.tensor_parallel.layers import ColumnParallelLinear
from megatron.core.transformer.enums import ModelType
from megatron.core.transformer.spec_utils import ModuleSpec, build_module
from megatron.core.transformer.transformer_block import TransformerBlock
from megatron.core.transformer.transformer_config import TransformerConfig

# RADIO reference code: https://github.com/NVlabs/RADIO


class RADIOViTModel(VisionModule):
    """RADIO ViT vision model.

    Args:
        transformer_config (TransformerConfig): Transformer config.
        transformer_layer_spec (ModuleSpec): Specifies module to use for transformer layers.
        ln_pre_impl (ModuleSpec or type): Specifies the layer norm type to use for ln_pre.
        ln_post_impl (ModuleSpec or type): Specifies the layer norm type to use for ln_post.
        use_mask_token (bool, optional): Whether to use RADIO mask token. Default to False.
        add_class_token (bool, optional): Include a class token. Defaults to True.
        class_token_len (int): Class token length. Defaults to 1 but 8 may be faster.
        patch_dim (int): Image patch size.
        img_h (int): Input image height.
        img_w (int): Input image width.
        max_img_h (int): Max input image height.
        max_img_w (int): Max input image width.
        pos_dropout (int): Positional encoding dropout value. Defaults to 0.
        has_cpe: (bool): Whether to use conditional positional encoding. Defaults to True.
        embedder_bias: (bool): Bias in embedder linear. Defaults to False.
    """

    def __init__(
        self,
        transformer_config: TransformerConfig,
        transformer_layer_spec: ModuleSpec,
        ln_pre_impl: Union[ModuleSpec, type] = None,
        ln_post_impl: Union[ModuleSpec, type] = None,
        use_mask_token: bool = False,
        add_class_token: bool = True,
        class_token_len: int = 8,
        patch_dim: int = 16,
        img_h: int = 224,
        img_w: int = 224,
        max_img_h: int = 2048,
        max_img_w: int = 2048,
        pos_dropout: int = 0,
        has_cpe: bool = True,
        embedder_bias: bool = False,
    ) -> None:
        super().__init__(config=transformer_config)

        if has_config_logger_enabled(transformer_config):
            log_config_to_disk(transformer_config, locals(), prefix=type(self).__name__)

        self.class_token_len = class_token_len
        self.visual_hidden_size = transformer_config.hidden_size
        self.patch_dim = patch_dim
        self.img_h = img_h
        self.img_w = img_w

        assert self.img_h % self.patch_dim == 0
        assert self.img_w % self.patch_dim == 0

        self.input_dims = (img_h // patch_dim, img_w // patch_dim)

        # used for positional embedding
        self.max_img_h = max_img_h
        self.max_img_w = max_img_w
        self.max_num_rows = max_img_h // patch_dim
        self.max_num_cols = max_img_w // patch_dim
        self.max_num_patches = self.max_num_rows * self.max_num_cols

        # TODO: are we actually going to use this anywhere?
        self.use_mask_token = use_mask_token
        if self.use_mask_token:
            self.mask_token = nn.Parameter(torch.zeros(1, self.visual_hidden_size))

        self.add_class_token = add_class_token
        self.class_token_len = class_token_len
        if self.add_class_token:
            self.class_token = nn.Parameter(
                torch.randn(self.class_token_len, self.visual_hidden_size)
            )

        self.seq_length = (img_h // self.patch_dim) * (img_w // self.patch_dim) + (
            self.class_token_len if self.add_class_token else 0
        )

        pos_scale = self.visual_hidden_size**-0.5
        self.position_embeddings = nn.Parameter(
            torch.randn(1, self.max_num_patches, self.visual_hidden_size) * pos_scale
        )
        self.pos_dropout = pos_dropout
        self.has_cpe = has_cpe

        # Using non-TE version so we can force gather_output
        self.embedder = ColumnParallelLinear(
            input_size=3 * self.patch_dim * self.patch_dim,
            output_size=self.visual_hidden_size,
            bias=embedder_bias,
            config=transformer_config,
            gather_output=True,
            init_method=lambda tensor: torch.nn.init.normal_(tensor, mean=0.0, std=1.0),
        )

        self.model_type = ModelType.encoder_or_decoder

        self.ln_pre = None
        self.ln_post = None
        if ln_pre_impl is not None:
            self.ln_pre = build_module(
                ln_pre_impl,
                config=transformer_config,
                hidden_size=self.visual_hidden_size,
                eps=transformer_config.layernorm_epsilon,
            )
        if ln_post_impl is not None:
            self.ln_post = build_module(
                ln_post_impl,
                config=transformer_config,
                hidden_size=self.visual_hidden_size,
                eps=transformer_config.layernorm_epsilon,
            )

        self.decoder = TransformerBlock(
            config=transformer_config,
            spec=transformer_layer_spec,
            pre_process=True,
            post_process=False,
        )

    def set_input_tensor(self, input_tensor: torch.Tensor) -> None:
        """Sets input tensor to the model.

        Args:
            input_tensor (Tensor): Sets the input tensor for the model.
        """
        self.decoder.set_input_tensor(input_tensor)

    def forward(
        self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        """Forward function of the RADIO ViT Model. This function passes the input tensors
        through the embedding layer and then the transformer.

        Args:
            x (torch.Tensor): input data of shape [batch, img_h, img_w]
            attention_mask (torch.Tensor with dtype=bool): Attention mask to use.

        Returns:
            x (torch.Tensor): output after final transformer block of shape [b, s, h].
        """
        input_size = x.shape[2:]
        py = x.shape[-2] // self.patch_dim
        px = x.shape[-1] // self.patch_dim
        x = rearrange(
            x,
            'b c (py yy) (px xx) -> b (py px) (c yy xx)',
            py=py,
            yy=self.patch_dim,
            px=px,
            xx=self.patch_dim,
        )
        x, _ = self.embedder(x)  # [batch, seq_length, hidden_size]

        x, _ = self.apply_pos_enc(x, input_size=input_size)

        if self.add_class_token:
            class_token = self.class_token.expand(
                x.shape[0], -1, -1
            )  # [batch, class_token_len, hidden_size]

            x = torch.cat(
                [class_token, x], dim=1
            )  # [batch, seq_length + class_token_len, hidden_size]

        assert x.shape[1] == self.seq_length, f"{x.shape[1]} != {self.seq_length}"

        if self.ln_pre:
            x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # [b, s, h] -> [s, b, h]
        x = x.contiguous()

        x = self.decoder(x, attention_mask=attention_mask)

        x = x.permute(1, 0, 2)  # [s, b, h] -> [b, s, h]
        x = x.contiguous()

        if self.ln_post:
            x = self.ln_post(x)

        return x

    def apply_pos_enc(
        self,
        patches: torch.Tensor,
        patch_idxs: Optional[torch.Tensor] = None,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> torch.Tensor:
        """Apply positional encoding to patches"""
        pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)

        if self.training and self.pos_dropout > 0:
            keeps = (
                torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device)
                > self.pos_dropout
            )
            pos_enc_drop = torch.where(keeps, pos_enc, 0)
        else:
            pos_enc_drop = pos_enc

        return patches + pos_enc_drop, pos_enc

    def get_pos_enc(
        self,
        batch_size: int,
        patch_idxs: Optional[torch.Tensor] = None,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> torch.Tensor:
        """Get positional encoding for certain input size"""
        if input_size is None:
            input_dims = self.input_dims
        else:
            input_dims = tuple(d // self.patch_dim for d in input_size)

        pos_embed = self._get_pos_embeddings(batch_size, input_dims)

        if patch_idxs is None:
            return pos_embed

        exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])

        pos_embed = torch.gather(
            pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs
        )
        return pos_embed

    def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
        """Get RADIO absolute positional embeddings"""
        if (self.max_num_rows, self.max_num_cols) == input_dims:
            return self.position_embeddings

        pos_embed = self.position_embeddings.reshape(
            1, self.max_num_rows, self.max_num_cols, -1
        ).permute(0, 3, 1, 2)

        def window_select(pos_embed):
            if input_dims[0] < pos_embed.shape[-2]:
                pos_embed = pos_embed[..., : input_dims[0], :]
            if input_dims[1] < pos_embed.shape[-1]:
                pos_embed = pos_embed[..., :, : input_dims[1]]
            return pos_embed

        if self.has_cpe:
            if self.training:
                min_scale = math.sqrt(0.1)
                scale = (
                    torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale)
                    + min_scale
                )
                aspect_min = math.log(3 / 4)
                aspect_max = -aspect_min
                aspect = torch.exp(
                    torch.rand(batch_size, 1, 1, device=pos_embed.device)
                    * (aspect_max - aspect_min)
                    + aspect_min
                )

                scale_x = scale * aspect
                scale_y = scale * (1 / aspect)
                scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)

                pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)

                lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[
                    None, None
                ].expand(batch_size, input_dims[0], -1)
                lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[
                    None, :, None
                ].expand(batch_size, -1, input_dims[1])

                lin_xy = torch.stack([lin_x, lin_y], dim=-1)

                grid_xy = lin_xy * scale_xy + pos_xy

                # Convert to [-1, 1] range
                grid_xy.mul_(2).sub_(1)

                pos_embed = F.grid_sample(
                    pos_embed.float().expand(batch_size, -1, -1, -1),
                    grid=grid_xy,
                    mode='bilinear',
                    padding_mode='zeros',
                    align_corners=True,
                ).to(pos_embed.dtype)
            else:
                max_dim = max(input_dims)
                pos_embed = F.interpolate(
                    pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear'
                ).to(pos_embed.dtype)

                pos_embed = window_select(pos_embed)
        else:
            pos_embed = window_select(pos_embed)

        if pos_embed.shape[-2:] != input_dims:
            pos_embed = F.interpolate(
                pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear'
            ).to(pos_embed.dtype)

        pos_embed = pos_embed.flatten(2).permute(0, 2, 1)

        return pos_embed