gpt_dataset.py 28.9 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import logging
import os
import time
from dataclasses import dataclass
from typing import Dict, Optional, Tuple

import numpy
import torch

from megatron.core.datasets.blended_megatron_dataset_config import BlendedMegatronDatasetConfig
from megatron.core.datasets.indexed_dataset import IndexedDataset
from megatron.core.datasets.megatron_dataset import MegatronDataset
from megatron.core.datasets.megatron_tokenizer import MegatronTokenizer
from megatron.core.datasets.utils import Split
from megatron.core.datasets.utils_s3 import S3Config, is_s3_path
from megatron.core.utils import log_single_rank

logger = logging.getLogger(__name__)

_PAD_TOKEN_ID = -1


@dataclass
class GPTDatasetConfig(BlendedMegatronDatasetConfig):
    """Configuration object for Megatron Core GPT datasets"""

    reset_position_ids: bool = None
    """Option to reset the position IDs in the dataset at an interval"""

    reset_attention_mask: bool = None
    """Option to reset the attention mask from the dataset"""

    eod_mask_loss: bool = None
    """Option to enable the EOD mask loss"""

    create_attention_mask: bool = True
    """Option to enable the attention masks generation. Can be disabled if attention kernel
       generates masks by itself.
    """

    drop_last_partial_validation_sequence: bool = True
    """Option to drop the last partial validation sequence"""

    add_extra_token_to_sequence: bool = True
    """Option to draw sequences with one extra token to ensure the sample input tokens and sample
       output tokens are both of the desired sequence length
    """

    s3_cache_path: str = None
    """Path for caching indices for s3 dataloading."""

    def __post_init__(self) -> None:
        """Do asserts and set fields post init"""
        super().__post_init__()

        assert self.tokenizer is not None

        assert self.reset_position_ids is not None
        assert self.reset_attention_mask is not None
        assert self.eod_mask_loss is not None


class GPTDataset(MegatronDataset):
    """The base GPT dataset

    Args:
        indexed_dataset (IndexedDataset): The IndexedDataset around which to build the GPTDataset

        dataset_path (Optional[str]): The real path on disk to the dataset, for bookkeeping

        indexed_indices (numpy.ndarray): The set of the documents indices to expose

        num_samples (Optional[int]): The number of samples to draw from the indexed dataset. When
            None, build as many samples as correspond to one epoch.

        index_split (Split): The indexed_indices Split

        config (GPTDatasetConfig): The config
    """

    def __init__(
        self,
        indexed_dataset: IndexedDataset,
        dataset_path: Optional[str],
        indexed_indices: numpy.ndarray,
        num_samples: Optional[int],
        index_split: Split,
        config: GPTDatasetConfig,
    ) -> None:
        super().__init__(
            indexed_dataset, dataset_path, indexed_indices, num_samples, index_split, config
        )
        self.masks_and_position_ids_are_cacheable = not any(
            [
                self.config.reset_position_ids,
                self.config.reset_attention_mask,
                self.config.eod_mask_loss,
            ]
        )
        self.masks_and_position_ids_are_cached = False
        self.cached_attention_mask = None
        self.cached_loss_mask = None
        self.cached_position_ids = None

        try:
            self._pad_token_id = self.config.tokenizer.pad
        except Exception:
            self._pad_token_id = _PAD_TOKEN_ID

        (self.document_index, self.sample_index, self.shuffle_index) = (
            self._build_document_sample_shuffle_indices()
        )

    @staticmethod
    def numel_low_level_dataset(low_level_dataset: IndexedDataset) -> int:
        """Abstract method implementation

        For GPT, the underlying IndexedDataset should be split by sequence, as opposed to, say,
        BERT, which should be split by document

        Args:
            low_level_dataset (IndexedDataset): The underlying IndexedDataset

        Returns:
            int: The number of unique elements in the underlying IndexedDataset
        """
        return low_level_dataset.sequence_lengths.shape[0]

    @staticmethod
    def build_low_level_dataset(dataset_path: str, config: GPTDatasetConfig) -> IndexedDataset:
        """Abstract method implementation

        Args:
            dataset_path (str): The real path prefix to the IndexedDataset .bin and .idx files

            config (GPTDatasetConfig): The config

        Returns:
            IndexedDataset: The underlying IndexedDataset
        """
        if is_s3_path(dataset_path):
            return IndexedDataset(
                dataset_path,
                multimodal=False,
                mmap=config.mmap_bin_files,
                s3_config=S3Config(path_to_idx_cache=config.s3_cache_path),
            )
        return IndexedDataset(dataset_path, multimodal=False, mmap=config.mmap_bin_files)

    def __len__(self) -> int:
        """Abstract method implementation

        Returns:
            int: The length of the dataset
        """
        return self.sample_index.shape[0] - 1

    def __getitem__(self, idx: Optional[int]) -> Dict[str, torch.Tensor]:
        """Abstract method implementation

        Args:
            idx (Optioal[int]): The index into the dataset

        Returns:
            Dict[str, torch.Tensor]: The sample information wrapped in a dictionary
        """
        if idx is None:
            # Batch padding sequence so the index does not matter
            text, _ = self._query_document_sample_shuffle_indices(0)
        else:
            text, _ = self._query_document_sample_shuffle_indices(idx)

        text = torch.from_numpy(text).long()
        if self.config.add_extra_token_to_sequence:
            tokens = text[:-1].contiguous()
            labels = text[1:].contiguous()
        else:
            tokens = text
            labels = torch.roll(text, shifts=-1, dims=0)
            labels[-1] = self._pad_token_id

        if (
            not self.masks_and_position_ids_are_cacheable
            or not self.masks_and_position_ids_are_cached
        ):
            attention_mask, loss_mask, position_ids = _get_ltor_masks_and_position_ids(
                tokens,
                self.config.tokenizer.eod,
                self.config.reset_position_ids,
                self.config.reset_attention_mask,
                self.config.eod_mask_loss,
                self.config.create_attention_mask,
            )
            if self.masks_and_position_ids_are_cacheable:
                self.cached_attention_mask = attention_mask
                self.cached_loss_mask = loss_mask
                self.cached_position_ids = position_ids
                self.masks_and_position_ids_are_cached = True
        else:
            attention_mask = self.cached_attention_mask
            loss_mask = self.cached_loss_mask
            position_ids = self.cached_position_ids

        # For padded sequences, mask the loss
        loss_mask[labels == self._pad_token_id] = 0.0

        # For padded sequences, ensure the embedding layer can map the token ID
        tokens[tokens == self._pad_token_id] = 0
        labels[labels == self._pad_token_id] = 0

        # Batch padding sequence so we mask the loss
        if idx is None:
            loss_mask = torch.zeros_like(loss_mask)

        if self.config.create_attention_mask:
            return {
                "tokens": tokens,
                "labels": labels,
                "attention_mask": attention_mask,
                "loss_mask": loss_mask,
                "position_ids": position_ids,
            }
        else:
            return {
                "tokens": tokens,
                "labels": labels,
                "loss_mask": loss_mask,
                "position_ids": position_ids,
            }

    def _query_document_sample_shuffle_indices(
        self, idx: int
    ) -> Tuple[numpy.ndarray, numpy.ndarray]:
        """Get the text (token ids) and document ids for a given index

        Args:
            idx (int): The index into the dataset

        Returns:
            Tuple[numpy.ndarray, numpy.ndarray]: The text ids and document ids
        """
        # Do the shuffle mapping
        idx = self.shuffle_index[idx]

        # Get the beginning and end documents and offsets
        doc_index_beg, doc_index_beg_offset = self.sample_index[idx]
        doc_index_end, doc_index_end_offset = self.sample_index[idx + 1]

        document_ids = []
        sample_parts = []

        # Sample spans a single document
        if doc_index_beg == doc_index_end:
            # Add the document id
            document_ids.append(self.document_index[doc_index_beg])

            # Add the entire sample
            sample_parts.append(
                self.dataset.get(
                    self.document_index[doc_index_beg],
                    offset=doc_index_beg_offset,
                    length=doc_index_end_offset
                    - doc_index_beg_offset
                    + self.config.add_extra_token_to_sequence,
                )
            )

        # Sample spans multiple documents
        else:
            for i in range(doc_index_beg, doc_index_end + 1):
                # Add the document id
                document_ids.append(self.document_index[i])

                # Add the sample part
                offset = 0 if i > doc_index_beg else doc_index_beg_offset
                length = (
                    None
                    if i < doc_index_end
                    else doc_index_end_offset + self.config.add_extra_token_to_sequence
                )
                sample_parts.append(
                    self.dataset.get(self.document_index[i], offset=offset, length=length)
                )
        assert len(document_ids) == len(
            sample_parts
        ), f"len(document_ids) ({len(document_ids)}) != len(sample_parts) ({len(sample_parts)})"

        length = sum(map(len, sample_parts))

        # Pad the sample if necessary
        if length < (self.config.sequence_length + self.config.add_extra_token_to_sequence):
            sample_parts.append(
                [self._pad_token_id]
                * (self.config.sequence_length + self.config.add_extra_token_to_sequence - length)
            )

        return (
            numpy.concatenate(sample_parts, dtype=numpy.int64),
            numpy.array(document_ids, dtype=numpy.int64),
        )

    def _build_document_sample_shuffle_indices(
        self,
    ) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]:
        """Build the document index, the sample index, and the shuffle index

        The document index:
            -- 1-D
            -- An ordered array of document ids

        The sample index:
            -- 2-D
            -- The document indices and offsets which mark the start of every sample

        The shuffle index:
            -- 1-D
            -- A random permutation of index range of the sample index

        Returns:
            Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]: The document index, the sample
            index, and the shuffle index
        """
        path_to_cache = self.config.path_to_cache
        if path_to_cache is None and not self.config.mock:
            path_to_cache = os.path.join(
                self.dataset.path_prefix, "cache", f"{type(self).__name__}_indices"
            )

        if path_to_cache:
            base = f"{self.unique_description_hash}-{type(self).__name__}-{self.index_split.name}"
            get_path_to = lambda affix: os.path.join(path_to_cache, f"{base}-{affix}")
            path_to_description = get_path_to("description.txt")
            path_to_document_index = get_path_to("document_index.npy")
            path_to_sample_index = get_path_to("sample_index.npy")
            path_to_shuffle_index = get_path_to("shuffle_index.npy")
            cache_hit = all(
                map(
                    os.path.isfile,
                    [
                        path_to_description,
                        path_to_document_index,
                        path_to_sample_index,
                        path_to_shuffle_index,
                    ],
                )
            )
        else:
            cache_hit = False

        if not path_to_cache or (
            not cache_hit
            and (not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0)
        ):

            log_single_rank(
                logger,
                logging.INFO,
                f"Build and save the {type(self).__name__} {self.index_split.name} indices",
            )
            self.built_anew_on_cache_miss = True
            t_beg = time.time()

            sequence_length = self.config.sequence_length
            num_tokens_per_epoch = self._get_num_tokens_per_epoch()
            num_epochs = self._get_num_epochs(num_tokens_per_epoch)

            if num_epochs == 1:
                separate_final_epoch = False
            else:
                # Get the number of samples for the last epoch
                num_samples_sans_final_epoch = (
                    (num_epochs - 1) * num_tokens_per_epoch
                    - self.config.add_extra_token_to_sequence
                ) // sequence_length
                num_samples_from_final_epoch = self.num_samples - num_samples_sans_final_epoch
                num_samples_per_epoch = (
                    num_tokens_per_epoch - self.config.add_extra_token_to_sequence
                ) // sequence_length

                # num_samples_from_final_epoch should be non-negative
                assert num_samples_from_final_epoch >= 0

                # num_samples_from_final_epoch should not exceed max value
                assert num_samples_from_final_epoch <= num_samples_per_epoch + 1

                # Separate the final epoch if it falls below the threshold
                threshold = 0.80
                separate_final_epoch = num_samples_from_final_epoch < int(
                    threshold * num_samples_per_epoch
                )

                log_single_rank(
                    logger,
                    logging.DEBUG,
                    f"> num_samples_from_final_epoch: {num_samples_from_final_epoch}",
                )
                log_single_rank(logger, logging.DEBUG, f"> threshold: {threshold}")
                log_single_rank(
                    logger, logging.DEBUG, f"> num_samples_per_epoch: {num_samples_per_epoch}"
                )

            log_single_rank(
                logger, logging.DEBUG, f"> separate_final_epoch: {separate_final_epoch}"
            )

            numpy_random_state = numpy.random.RandomState(self.config.random_seed)

            # Build the document index
            document_index = _build_document_index(
                self.indices, num_epochs, numpy_random_state, separate_final_epoch
            )

            drop_last_partial_sequence = True
            if self.index_split == Split.valid:
                drop_last_partial_sequence = self.config.drop_last_partial_validation_sequence

            # Build the sample index
            from megatron.core.datasets import helpers

            if self.index_split == Split.valid:
                drop_last_partial_sequence = self.config.drop_last_partial_validation_sequence
            else:
                drop_last_partial_sequence = True

            assert document_index.dtype == numpy.int32
            assert self.dataset.sequence_lengths.dtype == numpy.int32
            if len(document_index) * 2 > len(self.dataset.sequence_lengths):
                # If "access density" of sequence_lengths is high, force load the mmap-ed array
                # into memory by making a copy.
                #
                # System performance benefits come from two aspects:
                #   1. We sequentially pre-load the whole file, most of which we expect to read
                #   2. The GIL is held when entering the c++ program, improving the speed of which
                #      improves parallelism
                sequence_lengths_for_cpp = self.dataset.sequence_lengths.copy()
            else:
                sequence_lengths_for_cpp = self.dataset.sequence_lengths
            sample_index = helpers.build_sample_idx(
                sequence_lengths_for_cpp,
                document_index,
                sequence_length,
                num_epochs,
                num_tokens_per_epoch,
                drop_last_partial_sequence,
                self.config.add_extra_token_to_sequence,
            )

            # Build the shuffle index
            if separate_final_epoch:
                shuffle_index = _build_shuffle_index(
                    num_samples_sans_final_epoch, sample_index.shape[0] - 1, numpy_random_state
                )
            else:
                shuffle_index = _build_shuffle_index(
                    sample_index.shape[0] - 1, sample_index.shape[0] - 1, numpy_random_state
                )

            if path_to_cache:
                os.makedirs(path_to_cache, exist_ok=True)
                # Write the description
                with open(path_to_description, "wt") as writer:
                    writer.write(self.unique_description)
                numpy.save(path_to_document_index, document_index, allow_pickle=True)
                numpy.save(path_to_sample_index, sample_index, allow_pickle=True)
                numpy.save(path_to_shuffle_index, shuffle_index, allow_pickle=True)
            else:
                log_single_rank(
                    logger,
                    logging.WARNING,
                    f"Unable to save {type(self).__name__} indexes because path_to_cache is None",
                )

            t_end = time.time()
            log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

            log_single_rank(
                logger, logging.INFO, f"> total number of samples: {sample_index.shape[0] - 1}"
            )
            log_single_rank(logger, logging.INFO, f"> total number of epochs: {num_epochs}")

            return document_index, sample_index, shuffle_index

        log_single_rank(
            logger, logging.INFO, f"Load the {type(self).__name__} {self.index_split.name} indices"
        )

        log_single_rank(
            logger,
            logging.INFO,
            f"\tLoad the document index from {os.path.basename(path_to_document_index)}",
        )
        t_beg = time.time()
        document_index = numpy.load(path_to_document_index, allow_pickle=True, mmap_mode='r')
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        log_single_rank(
            logger,
            logging.INFO,
            f"\tLoad the sample index from {os.path.basename(path_to_sample_index)}",
        )
        t_beg = time.time()
        sample_index = numpy.load(path_to_sample_index, allow_pickle=True, mmap_mode='r')
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        log_single_rank(
            logger,
            logging.INFO,
            f"\tLoad the shuffle index from {os.path.basename(path_to_shuffle_index)}",
        )
        t_beg = time.time()
        shuffle_index = numpy.load(path_to_shuffle_index, allow_pickle=True, mmap_mode='r')
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        log_single_rank(
            logger, logging.INFO, f"> total number of samples: {sample_index.shape[0] - 1}"
        )

        return document_index, sample_index, shuffle_index

    def _get_num_tokens_per_epoch(self) -> int:
        """Calculate the number of tokens in a single epoch

        Returns:
            int: The number of tokens in a single epoch
        """
        return int(numpy.sum(self.dataset.sequence_lengths[self.indices]))

    def _get_num_epochs(self, num_tokens_per_epoch: int) -> int:
        """Calculate the number of epochs

        Args:
            num_tokens_per_epoch (int): The number of tokens in a single epoch

        Returns:
            int: The number of epochs
        """
        num_epochs = 1
        num_tokens = num_tokens_per_epoch
        if self.num_samples is None:
            return num_epochs
        else:
            num_tokens_requested = (
                self.num_samples * self.config.sequence_length
            ) + self.config.add_extra_token_to_sequence
            while num_tokens < num_tokens_requested:
                num_epochs += 1
                num_tokens += num_tokens_per_epoch
        return num_epochs


def _build_document_index(
    documents: numpy.ndarray,
    num_epochs: int,
    numpy_random_state: numpy.random.RandomState,
    separate_final_epoch: bool,
) -> numpy.ndarray:
    """Build an array with length = num epochs * num documents

    Args:
        documents (numpy.ndarray): the subset of exposed document indices

        num_epochs (int): The number of epochs

        numpy_random_state (numpy.random.RandomState): The NumPy random state

        separate_final_epoch (bool): Whether to exclude the last epoch from the global shuffle

    Returns:
        numpy.ndarray: The document index
    """
    if not separate_final_epoch or num_epochs == 1:
        document_index = numpy.mgrid[0:num_epochs, 0 : len(documents)][1]
        document_index[:] = documents
        document_index = document_index.reshape(-1)
        document_index = document_index.astype(numpy.int32)
        numpy_random_state.shuffle(document_index)
        return document_index

    doc_idx_first = _build_document_index(documents, num_epochs - 1, numpy_random_state, False)
    doc_idx_last = _build_document_index(documents, 1, numpy_random_state, False)
    return numpy.concatenate((doc_idx_first, doc_idx_last))


def _build_shuffle_index(
    num_samples: int, total_size: int, numpy_random_state: numpy.random.RandomState
) -> numpy.ndarray:
    """Build the range [0, size) and shuffle

    Args:
        num_samples (int): The size of the first shuffle range [0, num_samples)

        total_size (int): The size of the entire index. If larger than 'num_samples', it defines
            the second shuffle range [num_samples, total_size)

        numpy_random_state (numpy.random.RandomState): The NumPy random state

    Returns:
        numpy.ndarray: The shuffle index
    """
    dtype_ = numpy.uint32
    if total_size >= (numpy.iinfo(numpy.uint32).max - 1):
        dtype_ = numpy.int64

    shuffle_idx_first = numpy.arange(start=0, stop=num_samples, step=1, dtype=dtype_)
    numpy_random_state.shuffle(shuffle_idx_first)
    if num_samples == total_size:
        return shuffle_idx_first

    shuffle_idx_last = numpy.arange(start=num_samples, stop=total_size, step=1, dtype=dtype_)
    numpy_random_state.shuffle(shuffle_idx_last)

    return numpy.concatenate((shuffle_idx_first, shuffle_idx_last))


def _get_ltor_masks_and_position_ids(
    data: torch.Tensor,
    eod_token: int,
    reset_position_ids: bool,
    reset_attention_mask: bool,
    eod_mask_loss: bool,
    create_attention_mask: bool,
):
    """Build masks and position id for left to right model.

    Args:
        data (torch.Tensor): The data tenor that holds the tokens from the dataset

        eod_token (int): ID of the token to that is considered the EOD

        reset_position_ids (bool): Switch to reset the document position ID's

        reset_attention_mask (bool): Switch to reset the attention mask

        eod_mask_loss (bool): Switch to enable the EOD mask loss

        create_attention_mask (bool): Switch to enable the attention masks generation. Can be
            disabled if attention kernel generates masks by itself.

    Returns:
        torch.Tensor: Attention mask needed to be used for Attention

        torch.Tensor: The mask used for loss value during training

        torch.Tensor: The position ID's of the token
    """
    seq_length = data.numel()

    if create_attention_mask:
        attention_mask = torch.tril(
            torch.ones((seq_length, seq_length), device=data.device)
        ).unsqueeze(0)
    else:
        attention_mask = None

    # Loss mask.
    loss_mask = torch.ones(seq_length, dtype=torch.float, device=data.device)
    if eod_mask_loss:
        loss_mask[data == eod_token] = 0.0

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()

    if reset_position_ids or reset_attention_mask:
        # Find indices where EOD token is.
        eod_index = position_ids[data == eod_token]
        # Detach indices from positions if going to modify positions.
        if reset_position_ids:
            eod_index = eod_index.clone()

        # Loop through EOD indices:
        prev_index = 0
        for j in range(eod_index.numel()):
            i = eod_index[j]
            # Mask attention loss.
            if reset_attention_mask and attention_mask is not None:
                attention_mask[0, (i + 1) :, : (i + 1)] = 0
            # Reset positions.
            if reset_position_ids:
                position_ids[(i + 1) :] -= i + 1 - prev_index
                prev_index = i + 1

    if attention_mask is not None:
        # Convert attention mask to binary:
        attention_mask = attention_mask < 0.5

    return attention_mask, loss_mask, position_ids


class MockGPTLowLevelDataset:
    """The mock GPT low level dataset

    This class is meant to generate tokenized data in the classic "Megatron-LM" GPT style. Notably,
    we add the end of document token to each element indexed in __getitem__

    Args:
        tokenizer (MegatronTokenizer): The tokenizer the special token information of which we use
            to augment the mock data.
    """

    seed: int = 0
    """The hard-coded random seed to use to set the NumPy RNG"""

    size: int = 100000
    """The hard-coded number of samples to generate"""

    max_sequence_length: int = 4096
    """The hard-coded max sequence length to generate"""

    def __init__(self, tokenizer: MegatronTokenizer) -> None:
        self.tokenizer = tokenizer
        rng = numpy.random.default_rng(seed=self.seed)
        self.sequence_lengths = rng.integers(
            low=1, high=self.max_sequence_length, size=self.size, dtype=numpy.int32
        )

    def __len__(self) -> int:
        return self.size

    def __getitem__(self, idx: int) -> numpy.number:
        length = self.sequence_lengths[idx]
        sample = numpy.int64(
            numpy.concatenate([numpy.arange(length - 1) + 1, [self.tokenizer.eod]])
        )
        return sample

    def get(self, idx: int, offset: int = 0, length: Optional[int] = None) -> numpy.ndarray:
        """This function is n abstraction over __getitem__ with support for slicing

        Args:
            idx (int): The index into the dataset

            offset (int): The integer token offset in the sequence

            length (Optional[int]): The number of tokens to grab from the sequence

        Returns:
            numpy.ndarray: The sequence tokens at the index
        """
        if length is None:
            length = self.sequence_lengths[idx] - offset
        return self[idx][offset : offset + length]


class MockGPTDataset(GPTDataset):
    """The mock GPT dataset

    Args:
        indexed_dataset (MockGPTLowLevelDataset): The MockGPTLowLevelDataset around which to build
            the MockGPTDataset

        dataset_path (Optional[str]): This argument is of no consequence for the MockGPTDataset

        indices (numpy.ndarray): The set of the dataset indices to expose

        num_samples (int): The number of samples to draw from the dataset

        index_split (Split): The indices Split

        config (GPTDatasetConfig): The config
    """

    def __init__(
        self,
        dataset: MockGPTLowLevelDataset,
        dataset_path: Optional[str],
        indices: numpy.ndarray,
        num_samples: int,
        index_split: Split,
        config: GPTDatasetConfig,
    ) -> None:
        assert config.mock

        super().__init__(dataset, dataset_path, indices, num_samples, index_split, config)

    @staticmethod
    def numel_low_level_dataset(low_level_dataset: MockGPTLowLevelDataset) -> int:
        """Abstract method implementation

        Args:
            low_level_dataset (MockGPTLowLevelDataset): The underlying MockGPTLowLevelDataset

        Returns:
            int: The number of unique elements in the underlying MockGPTLowLevelDataset
        """
        return len(low_level_dataset)

    @staticmethod
    def build_low_level_dataset(
        dataset_path: Optional[str], config: GPTDatasetConfig
    ) -> MockGPTLowLevelDataset:
        """Abstract method implementation

        Args:
            dataset_path (Optional[str]): This argument is of no consequence for the
                MockGPTLowLevelDataset

            config (GPTDatasetConfig): The config

        Returns:
            MockGPTLowLevelDataset: The underlying MockGPTLowLevelDataset
        """
        return MockGPTLowLevelDataset(config.tokenizer)