initialize.py 9 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron initialization."""

import random
import os
20
import time
Mohammad's avatar
Mohammad committed
21

22
import numpy as np
Mohammad's avatar
Mohammad committed
23
import torch
Ryan Prenger's avatar
Ryan Prenger committed
24
from datetime import timedelta
Mohammad's avatar
Mohammad committed
25

26
from megatron import fused_kernels
27
28
29
from megatron import get_adlr_autoresume
from megatron import get_args
from megatron import get_tensorboard_writer
Mohammad's avatar
Mohammad committed
30
from megatron import mpu
31
from megatron.global_vars import set_global_variables
32
33
34
from megatron.mpu import (set_tensor_model_parallel_rank,
                          set_tensor_model_parallel_world_size)

Mohammad's avatar
Mohammad committed
35

36
def initialize_megatron(extra_args_provider=None, args_defaults={},
Raul Puri's avatar
Raul Puri committed
37
                        ignore_unknown_args=False, allow_no_cuda=False):
Mohammad's avatar
Mohammad committed
38
    """Set global variables, initialize distributed, and
Raul Puri's avatar
Raul Puri committed
39
40
41
    set autoresume and random seeds.
    `allow_no_cuda` should not be set unless using megatron for cpu only 
    data processing. In general this arg should not be set unless you know 
42
43
    what you are doing.
    Returns a function to finalize distributed env initialization 
Boris Fomitchev's avatar
Boris Fomitchev committed
44
    (optionally, only when args.lazy_mpu_init == True)
45
    """
Raul Puri's avatar
Raul Puri committed
46
47
48
    if not allow_no_cuda:
        # Make sure cuda is available.
        assert torch.cuda.is_available(), 'Megatron requires CUDA.'
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
51
    # Parse args, build tokenizer, and set adlr-autoresume,
    # tensorboard-writer, and timers.
Mohammad's avatar
Mohammad committed
52
    set_global_variables(extra_args_provider=extra_args_provider,
53
54
                         args_defaults=args_defaults,
                         ignore_unknown_args=ignore_unknown_args)
Mohammad's avatar
Mohammad committed
55

56
    # torch.distributed initialization
57
    def finish_mpu_init():
58
59
60
61
62
63
64
65
        args = get_args()
        # Pytorch distributed.
        _initialize_distributed()
        
        # Random seeds for reproducibility.
        if args.rank == 0:
            print('> setting random seeds to {} ...'.format(args.seed))
        _set_random_seed(args.seed)
Mohammad's avatar
Mohammad committed
66

Sangkug Lym's avatar
Sangkug Lym committed
67
68
69
    # Set pytorch JIT layer fusion options.
    _set_jit_fusion_options()

Mohammad's avatar
Mohammad committed
70
    args = get_args()
71
    if  args.lazy_mpu_init:
72
        args.use_cpu_initialization=True
73
74
        # delayed initialization of DDP-related stuff
        # We only set basic DDP globals    
75
        set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
76
77
        # and return function for external DDP manager
        # to call when it has DDP initialized
78
        set_tensor_model_parallel_rank(args.rank)    
79
        return finish_mpu_init
80
    else:
81
82
        # Megatron's MPU is the master. Complete initialization right away.
        finish_mpu_init()
83

84
85
        # Autoresume.
        _init_autoresume()
mshoeybi's avatar
mshoeybi committed
86

87
88
89
        # Compile dependencies.
        _compile_dependencies()

90
91
        # No continuation function
        return None
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


def _compile_dependencies():

    args = get_args()

    # =========================
    # Compile dataset C++ code.
    # =========================
    # TODO: move this to ninja
    if torch.distributed.get_rank() == 0:
        start_time = time.time()
        print('> compiling dataset index builder ...')
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
        print('>>> done with dataset index builder. Compilation time: {:.3f} '
              'seconds'.format(time.time() - start_time), flush=True)

    # ==================
    # Load fused kernels
    # ==================

    # Custom kernel constraints check.
    seq_len = args.seq_length
    attn_batch_size = \
        (args.num_attention_heads / args.tensor_model_parallel_size) * \
        args.micro_batch_size
    # Constraints on sequence length and attn_batch_size to enable warp based
    # optimization and upper triangular optimization (for causal mask)
    custom_kernel_constraint = seq_len > 16 and seq_len <=2048 and \
        seq_len % 4 == 0 and attn_batch_size % 4 == 0
    # Print a warning.
    if not ((args.fp16 or args.bf16) and
            custom_kernel_constraint and
            args.masked_softmax_fusion):
        if args.rank == 0:
            print('WARNING: constraints for invoking optimized'
                  ' fused softmax kernel are not met. We default'
                  ' back to unfused kernel invocations.', flush=True)
    
    # Always build on rank zero first.
    if torch.distributed.get_rank() == 0:
        start_time = time.time()
        print('> compiling and loading fused kernels ...', flush=True)
        fused_kernels.load(args)
        torch.distributed.barrier()
    else:
        torch.distributed.barrier()
        fused_kernels.load(args)
    # Simple barrier to make sure all ranks have passed the
    # compilation phase successfully before moving on to the
    # rest of the program. We think this might ensure that
    # the lock is released.
    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print('>>> done with compiling and loading fused kernels. '
              'Compilation time: {:.3f} seconds'.format(
                  time.time() - start_time), flush=True)


Mohammad's avatar
Mohammad committed
152
153
154
155
156

def _initialize_distributed():
    """Initialize torch.distributed and mpu."""
    args = get_args()

Raul Puri's avatar
Raul Puri committed
157
    device_count = torch.cuda.device_count()
Mohammad's avatar
Mohammad committed
158
159
160
161
162
163
164
165
166
167
168
169
170
    if torch.distributed.is_initialized():

        if args.rank == 0:
            print('torch distributed is already initialized, '
                  'skipping initialization ...', flush=True)
        args.rank = torch.distributed.get_rank()
        args.world_size = torch.distributed.get_world_size()

    else:

        if args.rank == 0:
            print('> initializing torch distributed ...', flush=True)
        # Manually set the device ids.
171
        if device_count > 0:
Raul Puri's avatar
Raul Puri committed
172
            device = args.rank % device_count
173
174
175
176
177
178
            if args.local_rank is not None:
                assert args.local_rank == device, \
                    'expected local-rank to be the same as rank % device-count.'
            else:
                args.local_rank = device
            torch.cuda.set_device(device)
179
180
181
182
    # Call the init process
    torch.distributed.init_process_group(
        backend=args.distributed_backend,
        world_size=args.world_size, rank=args.rank,
183
        timeout=timedelta(minutes=10))
Mohammad's avatar
Mohammad committed
184

185
    # Set the tensor model-parallel, pipeline model-parallel, and
186
    # data-parallel communicators.
187
    if device_count > 0:
188
189
190
        if mpu.model_parallel_is_initialized():
            print('model parallel is already initialized')
        else:
191
            mpu.initialize_model_parallel(args.tensor_model_parallel_size,
192
                                          args.pipeline_model_parallel_size,
193
194
                                          args.virtual_pipeline_model_parallel_size,
                                          args.pipeline_model_parallel_split_rank)
Mohammad's avatar
Mohammad committed
195
196
197
198
199
200
201
202
203
204
205


def _init_autoresume():
    """Set autoresume start time."""
    autoresume = get_adlr_autoresume()
    if autoresume:
        torch.distributed.barrier()
        autoresume.init()
        torch.distributed.barrier()


206
def _set_random_seed(seed_):
Mohammad's avatar
Mohammad committed
207
    """Set random seed for reproducability."""
208
    if seed_ is not None and seed_ > 0:
209
        # Ensure that different pipeline MP stages get different seeds.
210
        seed = seed_ + (100 * mpu.get_pipeline_model_parallel_rank())
Mohammad's avatar
Mohammad committed
211
212
213
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
214
        if torch.cuda.device_count() > 0:
215
            mpu.model_parallel_cuda_manual_seed(seed)
Mohammad's avatar
Mohammad committed
216
217
    else:
        raise ValueError('Seed ({}) should be a positive integer.'.format(seed))
Mohammad's avatar
Mohammad committed
218
219


220
def write_args_to_tensorboard():
Mohammad's avatar
Mohammad committed
221
222
223
224
225
    """Write arguments to tensorboard."""
    args = get_args()
    writer = get_tensorboard_writer()
    if writer:
        for arg in vars(args):
226
227
            writer.add_text(arg, str(getattr(args, arg)),
                            global_step=args.iteration)
228
229


Sangkug Lym's avatar
Sangkug Lym committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def _set_jit_fusion_options():
    """Set PyTorch JIT layer fusion options."""
    # flags required to enable jit fusion kernels
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10):
        # nvfuser
        torch._C._jit_set_profiling_executor(True)
        torch._C._jit_set_profiling_mode(True)
        torch._C._jit_override_can_fuse_on_cpu(False)
        torch._C._jit_override_can_fuse_on_gpu(False)
        torch._C._jit_set_texpr_fuser_enabled(False)
        torch._C._jit_set_nvfuser_enabled(True)
        torch._C._debug_set_autodiff_subgraph_inlining(False)
    else:
        # legacy pytorch fuser
        torch._C._jit_set_profiling_mode(False)
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_override_can_fuse_on_cpu(True)
        torch._C._jit_override_can_fuse_on_gpu(True)
250