distrib_optimizer.py 30.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math

from megatron import get_args

# >>>
from lutil import pax, tp
DEBUG_ITERATION = 2 # 10
# <<<


class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
# class Float16DistributedOptimizer(MegatronOptimizer):
# class Float16DistributedOptimizer(BaseFloat16Optimizer):
class DistributedOptimizer(MegatronOptimizer):

    @classmethod
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):

        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_shard_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                # param_world_shard = param_local_shard.normalize(param_world_start)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
                param_shard_map[param] = {
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
                }

        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})

        return param_shard_map

    @classmethod
    def get_model_gbuf_shard(cls, model, dtype):

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer shard.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
            # >>>
            # if max_gbuf_shard_size != gbuf_world_shard.size:
            #     raise Exception("%d: smaller, rank %d. [ %d -> %d vs. %d]" % (
            #         data_parallel_rank,
            #         r,
            #         gbuf_size,
            #         max_gbuf_shard_size,
            #         gbuf_world_shard.size,
            #     ))
            # <<<
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
        gbuf_local_shard = gbuf_world_shard.normalize()

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
            "world_all" : gbuf_world_all_shards,
            "param_map" : param_shard_map,
            "max_shard_size" : max_gbuf_shard_size,
        }

        # pax(0, {"data": data})

        return data

    @classmethod
    def get_model_gbuf_shard_map(cls, model):
        return {
            dtype : cls.get_model_gbuf_shard(model, dtype)
            for dtype in model._grad_buffers
        }

    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):

        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })

        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })

        return param_gbuf_map

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
                    param_size = gbuf_shard_map["param_map"][param]["param"].size

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    # group_shard["max_size"] = gbuf_shard_map["max_shard_size"]
                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

                    # pax(0, {"gbuf_shard_map": gbuf_shard_map})
                    # >>>
                    # if torch.distributed.get_rank() == 1:
                    #     print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
                    #         torch.distributed.get_rank(),
                    #         group_index,
                    #         param_size,
                    #         str(tuple(param.shape)),
                    #     ))
                    # <<<

        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        # [ ... x ... ] Synchronize group sizes across ranks.
        
        # pax(0, {
        #     "param_group_map": [
        #         (g, str(p.shape))
        #         for p, g in param_group_map.items()
        #     ],
        #     "group_shards" : group_shards,
        # })

        return group_shards

    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

        # Allocate main param/grad shard.
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
        
        # main_param_shards = []
        for group_index, group_shard in enumerate(opt_group_shards):

            # pax(0, {
            #     "group_shard" : group_shard,
            # })

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # ** todo: for dtype in model_main_dtypes ........ **

            # Allocate shard.
            # if group_size == 0:
            #     main_param = None
            # else:
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # main_param_shards.append(main_param)
            group_shard["orig_group"]["params"] = [ main_param ]

            # # Update optimizer group.
            # self.optimizer.param_groups[group_index]["params"] = [ main_param ]

        # pax(1, {
        #     "opt_group_shards" : opt_group_shards,
        #     "main_param_shards" : main_param_shards,
        # })

        # return main_param_shards

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler, models):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler, models)

        # >>>
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
        # <<<

        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)

        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

        # Allocate main param shards.
        self.allocate_main_param_shards(self.opt_group_shards)

        # >>>
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
        # <<<

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

        # pax(0, {
        #     # "opt_group_shards" : self.opt_group_shards,
        #     # "param_groups" : self.optimizer.param_groups,
        #     "optimizer" : self.optimizer,
        #     "optimizer / state" : self.optimizer.state,
        # })
        # pax(1, {
        #     "optimizer" : self.optimizer,
        #     **{"optimizer / param_groups / %d" % i : g
        #        for i, g in enumerate(self.optimizer.param_groups)},
        #     "optimizer / state" : self.optimizer.state,
        #     "optimizer / state_dict" : self.optimizer.state_dict(),
        # })

        # Initialize main params.
        self._copy_model_params_to_main_params()

    @staticmethod
    def has_nan_debug(tensors):
        if isinstance(tensors, torch.Tensor):
            tensors = [ tensors ]
        assert isinstance(tensors, list)
        has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
        has_nan = any(has_nans)
        return has_nan
    def get_local_model_param_views(self):
        '''** FOR DEBUGGING. **'''
        model_param_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                model_param_shard = gbuf_shard_map["param"]
                model_param_views.append(
                    param.view(-1)[model_param_shard.start:model_param_shard.end])
        return model_param_views
    def get_local_model_grad_views(self):
        '''** FOR DEBUGGING. **'''
        model_grad_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf = self.models[model_index]._grad_buffers[dtype].data
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                gbuf_world_shard = gbuf_shard_map["gbuf_world"]
                model_grad_views.append(
                    gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
        return model_grad_views
    def get_world_model_params(self):
        '''** FOR DEBUGGING. **'''
        return [ p for m in self.models for p in m.parameters() ]
    def get_world_model_grads(self):
        '''** FOR DEBUGGING. **'''
        return [ p.main_grad for p in self.get_world_model_params() ]

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
    def get_main_param(self, group_index):
        # return self.optimizer.param_groups[group_index]["params"][0]
        return self.get_main_params()[group_index]
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")

    def zero_grad(self, set_to_none=True):

        model_params = []
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])

        # ** using contiguous buffer; don't set_to_none **
        _zero_grad_group_helper(model_params, set_to_none = False) # set_to_none)
        # _zero_grad_group_helper(params, set_to_none = False)

        # pax(0, {"model_params": model_params})

    # def get_model_grad_buffer_dp_views(self):

    #     # >>>
    #     # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
    #     args = get_args()
    #     assert args.use_contiguous_buffers_in_local_ddp
    #     # <<<

    #     # Grad buffer views.
    #     gbuf_view_items = []
    #     for model_index, model in enumerate(self.models):
    #         for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
    #             world_shards = gbuf_shard["world_all"]
    #             gbuf = model._grad_buffers[dtype].data
    #             gbuf_views = [ gbuf[s.start:s.end] for s in world_shards ]
    #             gbuf_view_items.append((model_index, dtype, gbuf_views))

    #             # pax(0, {
    #             #     "world_shards" : world_shards,
    #             #     "gbuf_views" : gbuf_views,
    #             # })

    #     pax(0, {
    #         "gbuf_view_items" : gbuf_view_items,
    #         **{
    #             "views / %d" % i : item[2]
    #             for i, item in enumerate(gbuf_view_items)
    #         },
    #     })

    #     return gbuf_view_items
    def get_model_grad_buffer_dp_views(self):

        # >>>
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp
        # <<<

        # data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                # gbuf_size = gbuf.numel_padded
                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                # pax(0, {
                #     "numel" : gbuf.numel,
                #     "numel_padded" : gbuf.numel_padded,
                #     "shard_size / f" : gbuf.numel_padded/data_parallel_world_size,
                #     "shard_size / i" : shard_size,
                # })
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
                gbuf_view_items.append((model_index, dtype, gbuf_views))

        # pax(0, {
        #     "gbuf_view_items" : gbuf_view_items,
        #     **{
        #         "views / %d" % i : item[2]
        #         for i, item in enumerate(gbuf_view_items)
        #     },
        # })

        return gbuf_view_items

    def reduce_grads(self, model):

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            # >>>
            # raise Exception("[fix] ready for weight sync?")
            # <<<
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    raise Exception("only 'main_grad' supported for distrib-opt.")
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
                # +++
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
                # <<<

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            # >>>
            raise Exception("[fix] ready for t5 sync?")
            # <<<
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
            # +++
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
            # <<<
        timers('backward-embedding-all-reduce').stop()

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
        # timers('backward-params-reduce-scatter').start()
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

        gbuf_view_items = self.get_model_grad_buffer_dp_views()

        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})
        # pax(0, {"gbufs": [
        #     g.data
        #     for m in self.models
        #     for g in m._grad_buffers.values()
        # ]})

        # >>>
        # buffer_.data /= mpu.get_data_parallel_world_size()
        # torch.distributed.all_reduce(
        #     buffer_.data, group=mpu.get_data_parallel_group())
        # <<<

        # >>>
        # self.debug_main_param(0, "before reduce scatter")
        # self.debug_main_grad(0, "before reduce scatter")
        # <<<

        for model_index, dtype, gbuf_views in gbuf_view_items:
            # coalesced /= mpu.get_data_parallel_world_size()
            gbuf = self.models[model_index]._grad_buffers[dtype].data

            # >>>
            # ~~ distributed.py ~~
            # gbuf /= data_parallel_world_size
            # torch.distributed.all_reduce(gbuf, group=data_parallel_group)
            # pax(0, {
            #     "gbuf" : tp(gbuf),
            # })
            # <<<

            # torch.mul(gbuf.data, 1. / data_parallel_world_size, out = gbuf.data)
            # gbuf_views = [ t / data_parallel_world_size for t in gbuf_views ]
            gbuf /= data_parallel_world_size

            # if 1:
            # try:
            # pax(0, {"gbuf_views": gbuf_views})
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
            # except:
            #     pax(0, {
            #         "data_parallel_rank" : data_parallel_rank,
            #         "gbuf_views" : gbuf_views,
            #     })
            # else:
            #     torch.distributed.all_reduce(
            #         gbuf,
            #         group = data_parallel_group,
            #     )
        # timers('backward-params-reduce-scatter').stop()
        timers('backward-params-all-reduce').stop()
            
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})

    def gather_params(self, ITERATION):

        # >>>
        timers = get_timers()
        # <<<

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        gbuf_view_items = self.get_model_grad_buffer_dp_views()

        # All-gather updated main params.
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        # for param in self.param_gbuf_map: # ... incomplete param list.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()

        # pax(0, {"gbuf_view_items": gbuf_view_items})

        # >>>
        # self.debug_main(ITERATION, "after/inside gather_params.", 0)
        # self.debug_model(ITERATION, "after/inside gather_params.", 0)

        # if ITERATION == 2:
        #     pax(1, {
        #         "ITERATION" : ITERATION,
        #         # "gbufs" : [
        #         #     tp(b.data)
        #         #     for m in self.models
        #         #     for b in m._grad_buffers.values()
        #         # ],
        #         "param_gbuf_map" : [ str(tuple(p.shape)) for p in self.param_gbuf_map ],
        #     })
        # <<<

    def _collect_main_grad_data_for_unscaling(self):
        return [ g.data for g in self.get_main_grads() ]

    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            main_param = self.get_main_param(group_index)
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]

                main_view.detach().copy_(model_view)


    def _copy_model_grads_to_main_grads(self, ITERATION):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # pax(0, {
                #     "model_param" : tp(model_param),
                #     "main_shard" : str(main_shard),
                #     "param shard" : self.model_gbuf_shards \
                #     [model_index][dtype]["param_map"][model_param],
                # })

                # Copy from DDP's contiguous buffer to main shard's grad.
                model_grad = self.models[model_index]._grad_buffers[dtype].data
                main_grad = self.get_main_grad(group_index)

                # Copy sub-range within tensor.
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]

                main_view.detach().copy_(model_view)

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     # "param" : tp(param),
                #     "model_index" : model_index,
                #     "dtype" : str(dtype),
                #     "model_grad" : tp(model_grad),
                #     "main_grad" : tp(main_grad),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

        # >>>
        # if 1 or ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         # "model grads" : self.get_world_model_grads(),
        #         "main_grads" : self.get_main_grads(),
        #         "group shards" : [
        #             "group %d; %s" % (grp_idx, main_shard)
        #             for grp_idx, grp_shard in enumerate(self.opt_group_shards)
        #             for model_param, main_shard in grp_shard["param_map"].items()
        #         ],
        #     })
        # <<<


    def _copy_main_params_to_model_params(self, ITERATION):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
                model_param = self.models[model_index]._grad_buffers[dtype].data
                main_param = self.get_main_param(group_index)

                # Copy sub-range within tensor.
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]

                model_view.detach().copy_(main_view)

                # Debug.
                # pax(1, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "model_param" : tp(model_param),
                #     "model_index" : model_index,
                #     "dtype" : str(dtype),
                #     "model_param" : tp(model_param),
                #     "main_param" : tp(main_param),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : self.get_world_model_params(),
        #     })
        # <<<

# <<<