utils.py 1.86 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utilities for models."""

import math

import torch

22
from megatron import get_args
23
24
25
26
27
28
29
30
31
32
33
34

def init_method_normal(sigma):
    """Init method based on N(0, sigma)."""
    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)

    return init_


def scaled_init_method_normal(sigma, num_layers):
    """Init method based on N(0, sigma/sqrt(2*num_layers)."""
    std = sigma / math.sqrt(2.0 * num_layers)
Neel Kant's avatar
Neel Kant committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=0.0, std=std)

    return init_


def get_linear_layer(rows, columns, init_method):
    """Simple linear layer with weight initialization."""
    layer = torch.nn.Linear(rows, columns)
    init_method(layer.weight)
    with torch.no_grad():
        layer.bias.zero_()
    return layer

50
@torch.jit.script
51
52
53
54
def gelu_impl(x):
    """OpenAI's gelu implementation."""
    return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
                                       (1.0 + 0.044715 * x * x)))
55
def openai_gelu(x):
56
57
    return gelu_impl(x)

58
59
60
61
#This is actually Python equivalent of torch.nn.functional.gelu(), also with type hints for ONNX exporter
@torch.jit.script
def erf_gelu(x):
    return x * 0.5 * (torch.erf(x / 1.41421).to(dtype=x.dtype)+torch.ones_like(x).to(dtype=x.dtype))