communication.py 3.61 KB
Newer Older
mshoeybi's avatar
working  
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Communications utilities."""


import torch

mshoeybi's avatar
mshoeybi committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from megatron import mpu


def broadcast_from_last_pipeline_stage(size, dtype, tensor=None):
    """Broadcast a tensor from last pipeline stage to all ranks."""

    if mpu.is_pipeline_last_stage():
        assert tensor is not None
        assert tensor.is_cuda
        assert tensor.is_contiguous()
    else:
        tensor = torch.empty(size,
                             dtype=dtype,
                             device=torch.cuda.current_device())
    # Get the group and corresponding source rank.
    src = mpu.get_pipeline_model_parallel_last_rank()
    group = mpu.get_pipeline_model_parallel_group()
    torch.distributed.broadcast(tensor, src, group)

    return tensor


def copy_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
    """Copy tensor values from last stage into the first stage.
    Note that the input tensor is updated in place."""

    # Only first and last stage pipeline stages need to be involved.
    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()
    if is_last_stage or is_first_stage:
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        if is_last_stage:
            assert tensor is not None
            assert tensor.is_cuda
            tensor_ = tensor.contiguous()
        else:
            tensor_ = torch.empty(size,
                                  dtype=dtype,
                                  device=torch.cuda.current_device())
        # Broadcast from last stage into the first stage.
        torch.distributed.broadcast(tensor_, src, group)
        # Update the first stage tensor
        if is_first_stage:
            tensor[...] = tensor_
mshoeybi's avatar
working  
mshoeybi committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


def broadcast_tensor(size, dtype, tensor=None, rank=0):
    """ Given size and type of a tensor on all ranks and the tensor value
        only on a specific rank, broadcast from that rank to all other ranks.
    """

    if torch.distributed.get_rank() == rank:
        assert tensor is not None
        assert tensor.is_cuda
    else:
        tensor = torch.empty(size,
                             dtype=dtype,
                             device=torch.cuda.current_device())

    torch.distributed.broadcast(tensor, rank)

    return tensor


mshoeybi's avatar
mshoeybi committed
86
87
88
89
90
91
92
93
94
95
96
def broadcast_list(size, dtype, list_values=None, rank=0):
    """Broadcast a list of values with a given type."""

    tensor = None
    if torch.distributed.get_rank() == rank:
        tensor = torch.tensor(list_values, dtype=dtype,
                              device=torch.cuda.current_device())

    return broadcast_tensor(size, dtype, tensor=tensor, rank=rank)


mshoeybi's avatar
working  
mshoeybi committed
97
98
99
def broadcast_int_list(size, int_list=None, rank=0):
    """Broadcast a list of interger values."""

mshoeybi's avatar
mshoeybi committed
100
101
102
103
104
    return broadcast_list(size, torch.int64, list_values=int_list, rank=rank)


def broadcast_float_list(size, float_list=None, rank=0):
    """Broadcast a list of float values."""
mshoeybi's avatar
working  
mshoeybi committed
105

mshoeybi's avatar
mshoeybi committed
106
107
    return broadcast_list(size, torch.float32, list_values=float_list,
                          rank=rank)