gpt2_tokenization.py 13.1 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tokenization classes for OpenAI GPT."""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import sys
import json
import logging
import os
import regex as re
from io import open

try:
    from functools import lru_cache
except ImportError:
    # Just a dummy decorator to get the checks to run on python2
Neel Kant's avatar
Neel Kant committed
32
33
    # because honestly I don't want to support a byte-level unicode BPE
    # tokenizer on python 2 right now.
Mohammad's avatar
Mohammad committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    def lru_cache():
        return lambda func: func


logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
    'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'gpt2': 1024,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
SPECIAL_TOKENS_NAME = 'special_tokens.txt'

Neel Kant's avatar
Neel Kant committed
53

Mohammad's avatar
Mohammad committed
54
55
56
57
58
59
60
61
62
63
64
65
@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    _chr = unichr if sys.version_info[0] == 2 else chr
Neel Kant's avatar
Neel Kant committed
66
67
    bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + \
        list(range(ord("®"), ord("ÿ") + 1))
Mohammad's avatar
Mohammad committed
68
69
70
71
72
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
Neel Kant's avatar
Neel Kant committed
73
            cs.append(2**8 + n)
Mohammad's avatar
Mohammad committed
74
75
76
77
            n += 1
    cs = [_chr(n) for n in cs]
    return dict(zip(bs, cs))

Neel Kant's avatar
Neel Kant committed
78

Mohammad's avatar
Mohammad committed
79
80
81
82
83
84
85
86
87
88
89
90
def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

Neel Kant's avatar
Neel Kant committed
91

Mohammad's avatar
Mohammad committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
class GPT2Tokenizer(object):
    """
    GPT-2 BPE tokenizer. Peculiarities:
        - Byte-level BPE
    """
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
            merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
            special_tokens_file = None
        else:
            vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
            special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
            if not os.path.exists(special_tokens_file):
                special_tokens_file = None
            else:
                logger.info("loading special tokens file {}".format(special_tokens_file))
        # redirect to the cache, if necessary
        try:
            from .file_utils import cached_path
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
            resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
        except EnvironmentError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path,
                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
                    pretrained_model_name_or_path,
                    vocab_file, merges_file))
            return None
        if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
            logger.info("loading merges file {}".format(merges_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
            logger.info("loading merges file {} from cache at {}".format(
                merges_file, resolved_merges_file))
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
        # Instantiate tokenizer.
        if special_tokens_file and 'special_tokens' not in kwargs:
            special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
        else:
            special_tokens = kwargs.pop('special_tokens', [])
Neel Kant's avatar
Neel Kant committed
148
149
150
151
152
153
        tokenizer = cls(
            resolved_vocab_file,
            resolved_merges_file,
            special_tokens=special_tokens,
            *inputs,
            **kwargs)
Mohammad's avatar
Mohammad committed
154
155
        return tokenizer

Neel Kant's avatar
Neel Kant committed
156
157
    def __init__(self, vocab_file, merges_file, errors='replace',
                 special_tokens=None, max_len=None):
Mohammad's avatar
Mohammad committed
158
159
        self.max_len = max_len if max_len is not None else int(1e12)
        self.encoder = json.load(open(vocab_file))
Neel Kant's avatar
Neel Kant committed
160
161
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.errors = errors  # how to handle errors in decoding
Mohammad's avatar
Mohammad committed
162
        self.byte_encoder = bytes_to_unicode()
Neel Kant's avatar
Neel Kant committed
163
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
Mohammad's avatar
Mohammad committed
164
165
166
167
168
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

Neel Kant's avatar
Neel Kant committed
169
170
171
172
        # Should haved added re.IGNORECASE so BPE merges can happen for
        # capitalized versions of contractions
        self.pat = re.compile(
            r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
Mohammad's avatar
Mohammad committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

        self.special_tokens = {}
        self.special_tokens_decoder = {}
        self.set_special_tokens(special_tokens)

    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

    def set_special_tokens(self, special_tokens):
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
Neel Kant's avatar
Neel Kant committed
190
191
192
        self.special_tokens = dict((tok, len(self.encoder) + i)
                                   for i, tok in enumerate(special_tokens))
        self.special_tokens_decoder = {v: k for k, v in self.special_tokens.items()}
Mohammad's avatar
Mohammad committed
193
194
195
196
197
198
199
200
201
202
203
204
        logger.info("Special tokens {}".format(self.special_tokens))

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
Neel Kant's avatar
Neel Kant committed
205
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
Mohammad's avatar
Mohammad committed
206
207
208
209
210
211
212
213
214
215
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
Neel Kant's avatar
Neel Kant committed
216
                except BaseException:
Mohammad's avatar
Mohammad committed
217
218
219
                    new_word.extend(word[i:])
                    break

Neel Kant's avatar
Neel Kant committed
220
221
                if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
                    new_word.append(first + second)
Mohammad's avatar
Mohammad committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def tokenize(self, text):
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            if sys.version_info[0] == 2:
                token = ''.join(self.byte_encoder[ord(b)] for b in token)
            else:
                token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def convert_tokens_to_ids(self, tokens):
        """ Converts a sequence of tokens into ids using the vocab. """
        ids = []
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
Neel Kant's avatar
Neel Kant committed
264
265
                " sequence through the model will result in indexing errors".format(
                    len(ids), self.max_len)
Mohammad's avatar
Mohammad committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            )
        return ids

    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
            if i in self.special_tokens_decoder:
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
            else:
                tokens.append(self.decoder[i])
        return tokens

    def encode(self, text):
        return self.convert_tokens_to_ids(self.tokenize(text))

    def decode(self, tokens):
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text

    def save_vocabulary(self, vocab_path):
        """Save the tokenizer vocabulary and merge files to a directory."""
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
        vocab_file = os.path.join(vocab_path, VOCAB_NAME)
        merge_file = os.path.join(vocab_path, MERGES_NAME)
        special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

        index = len(self.encoder)
        with open(special_tokens_file, 'w', encoding='utf-8') as writer:
            for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(special_tokens_file))
                    index = token_index
                writer.write(token + u'\n')
                index += 1

        return vocab_file, merge_file, special_tokens_file