realm_model.py 19.6 KB
Newer Older
1
2
3
4
import numpy as np
import torch
import torch.nn.functional as F

5
from megatron import get_args
6
from megatron.checkpointing import load_checkpoint
7
from megatron.data.realm_index import detach, BlockData, FaissMIPSIndex
8
from megatron.model import BertModel
9
from megatron.model.utils import get_linear_layer, init_method_normal
10
from megatron.module import MegatronModule
11
12
from megatron.utils import report_memory
from megatron import mpu
13
14


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
class REALMAnswerSpanModel(MegatronModule):
    def __init__(self, realm_model, mlp_hidden_size=64):
        super(REALMAnswerSpanModel, self).__init__()
        self.realm_model = realm_model
        self.mlp_hidden_size = mlp_hidden_size

        args = get_args()
        init_method = init_method_normal(args.init_method_std)
        self.fc1 = get_linear_layer(2 * args.hidden_size, self.mlp_hidden_size, init_method)
        self._fc1_key = 'fc1'
        self.fc2 = get_linear_layer(self.mlp_hidden_size, 1, init_method)
        self._fc2_key = 'fc2'

        max_length = 10
        self.start_ends = []
        for length in range(max_length):
            self.start_ends.extend([(i, i + length) for i in range(288 - length)])

    def forward(self, question_tokens, question_attention_mask, answer_tokens, answer_token_lengths):
        lm_logits, block_probs, topk_block_tokens = self.realm_model(
            question_tokens, question_attention_mask, query_block_indices=None, return_topk_block_tokens=True)

        batch_span_reps, batch_loss_masks = [], []
        # go through batch one-by-one
        for i in range(len(answer_token_lengths)):
            answer_length = answer_token_lengths[i]
            answer_span_tokens = answer_tokens[i][:answer_length]
            span_reps, loss_masks = [], []
            # go through the top k for the batch item
            for logits, block_tokens in zip(lm_logits[i], topk_block_tokens[i]):
                block_logits = logits[len(logits) / 2:]
                span_starts = range(len(block_tokens) - (answer_length - 1))

                # record the start, end indices of spans which match the answer
                matching_indices = set([
                    (idx, idx + answer_length - 1) for idx in span_starts
                    if np.array_equal(block_tokens[idx:idx + answer_length], answer_span_tokens)
                ])
                # create a mask for computing the loss on P(y | z, x)
                # [num_spans]
                loss_masks.append(torch.LongTensor([int(idx_pair in matching_indices) for idx_pair in self.start_ends]))

                # get all of the candidate spans that need to be fed to MLP
                # [num_spans x 2 * embed_size]
                span_reps.append([torch.cat((block_logits[s], block_logits[e])) for (s, e) in self.start_ends])

            # data for all k blocks for a single batch item
            # [k x num_spans]
            batch_loss_masks.append(torch.stack(loss_masks))
            # [k x num_spans x 2 * embed_size]
            batch_span_reps.append(torch.stack(span_reps))

        # data for all batch items
        # [batch_size x k x num_spans]
        batch_loss_masks = torch.stack(batch_loss_masks)
        batch_span_reps = torch.stack(batch_span_reps)
        # [batch_size x k x num_spans]
        batch_span_logits = self.fc2(self.fc1(batch_span_reps)).squeeze()

        return batch_span_logits, batch_loss_masks, block_probs

        # block_probs = block_probs.unsqueeze(2).unsqueeze(3).expand_as(lm_logits)
        # lm_logits = torch.sum(lm_logits * block_probs, dim=1)


80
81
82
83
class REALMBertModel(MegatronModule):
    def __init__(self, retriever):
        super(REALMBertModel, self).__init__()
        bert_args = dict(
84
            num_tokentypes=2,
85
86
87
88
89
90
91
92
            add_binary_head=False,
            parallel_output=True
        )
        self.lm_model = BertModel(**bert_args)
        load_checkpoint(self.lm_model, optimizer=None, lr_scheduler=None)
        self._lm_key = 'realm_lm'

        self.retriever = retriever
93
        self.top_k = self.retriever.top_k
94
        self._retriever_key = 'retriever'
95
        # self.eval()
96

97
    def forward(self, tokens, attention_mask, query_block_indices, return_topk_block_tokens=False):
98
99
100
101
102
103
104
105
        dset = self.retriever.ict_dataset

        det_tokens = detach(tokens)[0].tolist()
        det_attention = detach(attention_mask)[0].tolist()
        # print("\nTokens: ", det_tokens, '\n', flush=True)
        # print("\nAttention: ", det_attention, '\n', flush=True)
        # print("pad id: ", dset.pad_id, flush=True)

Neel Kant's avatar
Neel Kant committed
106
107
108
109
110
        # assert bool(0 in det_attention) == bool(dset.pad_id in det_tokens)
        # if 0 in det_attention:
        #     idx_padid = det_tokens.index(dset.pad_id)
        #     idx_attn = det_attention.index(0)
        #     assert idx_padid == idx_attn, (idx_padid, idx_attn)
111
112
113
114
115

        # text = dset.decode_tokens(det_tokens)
        # print(text, flush=True)


116
117
118
        # [batch_size x k x seq_length]
        topk_block_tokens, topk_block_attention_mask = self.retriever.retrieve_evidence_blocks(
            tokens, attention_mask, query_block_indices=query_block_indices, include_null_doc=True)
119
120
        # print("Top k block shape: ", topk_block_tokens.shape, flush=True)

121
        batch_size = tokens.shape[0]
122
123
        # create a copy in case it needs to be returned
        ret_topk_block_tokens = np.array(topk_block_tokens)
124

125
        seq_length = topk_block_tokens.shape[2]
126
127
128
129
        long_tensor = torch.cuda.LongTensor
        topk_block_tokens = long_tensor(topk_block_tokens).reshape(-1, seq_length)
        topk_block_attention_mask = long_tensor(topk_block_attention_mask).reshape(-1, seq_length)
        # print('Block token shape: ', topk_block_tokens.shape, flush=True)
130

131
        # [batch_size x k x embed_size]
132
        true_model = self.retriever.ict_model.module.module
133
        fresh_block_logits = mpu.checkpoint(true_model.embed_block, topk_block_tokens, topk_block_attention_mask)
134
        fresh_block_logits = fresh_block_logits.reshape(batch_size, self.top_k, -1).float()
135
        # print('Fresh block logits shape: ', fresh_block_logits.shape, flush=True)
136

Neel Kant's avatar
Neel Kant committed
137
        # [batch_size x 1 x embed_size]
138
        query_logits = mpu.checkpoint(true_model.embed_query, tokens, attention_mask).unsqueeze(1).float()
139

140
        # [batch_size x k]
Neel Kant's avatar
Neel Kant committed
141
        fresh_block_scores = torch.matmul(query_logits, torch.transpose(fresh_block_logits, 1, 2)).squeeze()
142
143
        block_probs = F.softmax(fresh_block_scores, dim=1)

144
145
        # [batch_size * k x seq_length]
        tokens = torch.stack([tokens.unsqueeze(1)] * self.top_k, dim=1).reshape(-1, seq_length)
146
147
148
        # assert all(torch.equal(tokens[i], tokens[0]) for i in range(self.top_k))
        # assert all(torch.equal(tokens[i], tokens[self.top_k]) for i in range(self.top_k, 2 * self.top_k))
        # assert not any(torch.equal(tokens[i], tokens[0]) for i in range(self.top_k, batch_size * self.top_k))
149
        attention_mask = torch.stack([attention_mask.unsqueeze(1)] * self.top_k, dim=1).reshape(-1, seq_length)
150

151
        # [batch_size * k x 2 * seq_length]
152
153
154
155
        lm_input_batch_shape = (batch_size * self.top_k, 2 * seq_length)
        all_tokens = torch.zeros(lm_input_batch_shape).long().cuda()
        all_attention_mask = all_tokens.clone()
        all_token_types = all_tokens.clone()
156

157
        query_lengths = torch.sum(attention_mask, axis=1)
158
159
160
161
162
163
164
        # all blocks (including null ones) will have two SEP tokens
        block_sep_indices = (topk_block_tokens == dset.sep_id).nonzero().reshape(batch_size * self.top_k, 2, 2)

        # block body starts after the first SEP
        block_starts = block_sep_indices[:, 0, 1] + 1
        # block body ends after the second SEP
        block_ends = block_sep_indices[:, 1, 1] + 1
165

166
        print('-' * 100)
167
168
169
170
171
        for row_num in range(all_tokens.shape[0]):
            q_len = query_lengths[row_num]
            b_start = block_starts[row_num]
            b_end = block_ends[row_num]
            # new tokens = CLS + query + SEP + block + SEP
172
173
            new_tokens_length = q_len + b_end - b_start

174
175
            # splice query and block tokens accordingly
            all_tokens[row_num, :q_len] = tokens[row_num, :q_len]
176
            all_tokens[row_num, q_len:new_tokens_length] = topk_block_tokens[row_num, b_start:b_end]
177
178
            all_tokens[row_num, new_tokens_length:] = self.retriever.ict_dataset.pad_id

179
            print(dset.decode_tokens(detach(all_tokens[row_num]).tolist()), '\n', flush=True)
180

181
182
            all_attention_mask[row_num, :new_tokens_length] = 1
            all_attention_mask[row_num, new_tokens_length:] = 0
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        print('-' * 100)

        args = get_args()
        if args.rank == 0:
            torch.save({'lm_tokens': all_tokens,
                        'lm_attn_mask': all_attention_mask,
                        'query_tokens': tokens,
                        'query_attn_mask': attention_mask,
                        'query_logits': query_logits,
                        'block_tokens': topk_block_tokens,
                        'block_attn_mask': topk_block_attention_mask,
                        'block_logits': fresh_block_logits,
                        'block_probs': block_probs,
                        }, 'final_lm_inputs.data')

        # assert all(torch.equal(all_tokens[i], all_tokens[0]) for i in range(self.top_k))
        # assert all(torch.equal(all_attention_mask[i], all_attention_mask[0]) for i in range(self.top_k))
200

201
        # [batch_size x k x 2 * seq_length x vocab_size]
202
        lm_logits, _ = self.lm_model.forward(all_tokens, all_attention_mask, all_token_types)
203
        lm_logits = lm_logits.reshape(batch_size, self.top_k, 2 * seq_length, -1)
204
205
206
207

        if return_topk_block_tokens:
            return lm_logits, block_probs, ret_topk_block_tokens

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        return lm_logits, block_probs

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._lm_key] = self.lm_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        state_dict_[self._retriever_key] = self.retriever.state_dict_for_save_checkpoint(destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        self.lm_model.load_state_dict(state_dict[self._lm_key], strict)
        self.retriever.load_state_dict(state_dict[self._retriever_key], strict)


class REALMRetriever(MegatronModule):
    """Retriever which uses a pretrained ICTBertModel and a HashedIndex"""
    def __init__(self, ict_model, ict_dataset, block_data, hashed_index, top_k=5):
        super(REALMRetriever, self).__init__()
        self.ict_model = ict_model
        self.ict_dataset = ict_dataset
        self.block_data = block_data
        self.hashed_index = hashed_index
        self.top_k = top_k
        self._ict_key = 'ict_model'

238
239
240
    def reload_index(self):
        args = get_args()
        self.hashed_index.reset_index()
Neel Kant's avatar
Neel Kant committed
241
        self.block_data = BlockData.load_from_file(args.block_data_path)
242
243
        self.hashed_index.add_block_embed_data(self.block_data)

244
    def prep_query_text_for_retrieval(self, query_text):
245
246
247
248
249
250
251
        padless_max_len = self.ict_dataset.max_seq_length - 2
        query_tokens = self.ict_dataset.encode_text(query_text)[:padless_max_len]

        query_tokens, query_pad_mask = self.ict_dataset.concat_and_pad_tokens(query_tokens)
        query_tokens = torch.cuda.LongTensor(np.array(query_tokens).reshape(1, -1))
        query_pad_mask = torch.cuda.LongTensor(np.array(query_pad_mask).reshape(1, -1))

252
253
254
255
256
257
258
        return query_tokens, query_pad_mask

    def retrieve_evidence_blocks_text(self, query_text):
        """Get the top k evidence blocks for query_text in text form"""
        print("-" * 100)
        print("Query: ", query_text)
        query_tokens, query_pad_mask = self.prep_query_text_for_retrieval(query_text)
Neel Kant's avatar
Neel Kant committed
259
260
        topk_block_tokens, _ = self.retrieve_evidence_blocks(query_tokens, query_pad_mask)
        for i, block in enumerate(topk_block_tokens[0]):
261
262
263
            block_text = self.ict_dataset.decode_tokens(block)
            print('\n    > Block {}: {}'.format(i, block_text))

264
    def retrieve_evidence_blocks(self, query_tokens, query_pad_mask, query_block_indices=None, include_null_doc=False):
265
266
        """Embed blocks to be used in a forward pass"""
        with torch.no_grad():
267
268
            if hasattr(self.ict_model, 'module'):
                true_model = self.ict_model.module
269
270
                if hasattr(true_model, 'module'):
                    true_model = true_model.module
271
272
            else:
                true_model = self.ict_model
273
274
            # print("true model: ", true_model, flush=True)

275
            query_embeds = true_model.embed_query(query_tokens, query_pad_mask)
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
            _, block_indices = self.hashed_index.search_mips_index(query_embeds, top_k=self.top_k, reconstruct=False)
            all_topk_tokens, all_topk_pad_masks = [], []

            # this will result in no candidate exclusion
            if query_block_indices is None:
                query_block_indices = [-1] * len(block_indices)

            top_k_offset = int(include_null_doc)
            for query_idx, indices in enumerate(block_indices):
                # [k x meta_dim]
                # exclude trivial candidate if it appears, else just trim the weakest in the top-k
                topk_metas = [self.block_data.meta_data[idx] for idx in indices if idx != query_block_indices[query_idx]]
                topk_block_data = [self.ict_dataset.get_block(*block_meta) for block_meta in topk_metas[:self.top_k - top_k_offset]]
                if include_null_doc:
                    topk_block_data.append(self.ict_dataset.get_null_block())
                topk_tokens, topk_pad_masks = zip(*topk_block_data)

                all_topk_tokens.append(np.array(topk_tokens))
                all_topk_pad_masks.append(np.array(topk_pad_masks))

            # [batch_size x k x seq_length]
            return np.array(all_topk_tokens), np.array(all_topk_pad_masks)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._ict_key] = self.ict_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        self.ict_model.load_state_dict(state_dict[self._ict_key], strict)


class ICTBertModel(MegatronModule):
    """Bert-based module for Inverse Cloze task."""
    def __init__(self,
                 ict_head_size,
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
        super(ICTBertModel, self).__init__()
        bert_args = dict(
            num_tokentypes=num_tokentypes,
            add_binary_head=False,
            ict_head_size=ict_head_size,
            parallel_output=parallel_output
        )
        assert not (only_block_model and only_query_model)
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model

        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
            self.query_model = BertModel(**bert_args)
            self._query_key = 'question_model'

        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
            self.block_model = BertModel(**bert_args)
            self._block_key = 'context_model'

    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask, only_query=False, only_block=False):
        """Run a forward pass for each of the models and compute the similarity scores."""
        if only_query:
            return self.embed_query(query_tokens, query_attention_mask)

        if only_block:
            return self.embed_block(block_tokens, block_attention_mask)

        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)
Neel Kant's avatar
Neel Kant committed
352
        return query_logits, block_logits
353
354

        # [batch x embed] * [embed x batch]
Neel Kant's avatar
Neel Kant committed
355
356
        # retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
        # return retrieval_scores
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
            query_types = torch.zeros(query_tokens.shape).type(torch.int64).cuda()
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
            block_types = torch.zeros(block_tokens.shape).type(torch.int64).cuda()
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")

    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
        """Save dict with state dicts of each of the models."""
        state_dict_ = {}
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        if self.use_query_model:
            print("Loading ICT query model", flush=True)
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
            print("Loading ICT block model", flush=True)
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)
Neel Kant's avatar
Neel Kant committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

    def init_state_dict_from_bert(self):
        args = get_args()
        import os
        from megatron import mpu
        from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
        tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
        if not os.path.isfile(tracker_filename):
            raise FileNotFoundError("Could not find BERT load for ICT")
        with open(tracker_filename, 'r') as f:
            iteration = int(f.read().strip())
            assert iteration > 0

        checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
        if mpu.get_data_parallel_rank() == 0:
            print('global rank {} is loading checkpoint {}'.format(
                torch.distributed.get_rank(), checkpoint_name))

        try:
            state_dict = torch.load(checkpoint_name, map_location='cpu')
        except BaseException:
            raise ValueError("Could not load checkpoint")

        model_dict = state_dict['model']['language_model']
        self.query_model.language_model.load_state_dict(model_dict)
        self.block_model.language_model.load_state_dict(model_dict)
        query_ict_head_state_dict = self.state_dict_for_save_checkpoint()[self._query_key]['ict_head']
        self.block_model.ict_head.load_state_dict(query_ict_head_state_dict)