training.py 91 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

"""Pretrain utilities."""

import dataclasses
from datetime import datetime
import functools
import gc
import logging
import math
import os
import sys
from typing import List

import torch.distributed
from .log_handler import CustomHandler
# Make default logging level INFO, but filter out all log messages not from MCore.
logging.basicConfig(handlers=[CustomHandler()], level=logging.INFO)
from .theoretical_memory_usage import report_theoretical_memory
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
import torch

from megatron.core import mpu, tensor_parallel
from megatron.core.utils import (
    check_param_hashes_across_dp_replicas,
    get_model_config,
    StragglerDetector,
    is_float8tensor,
)
from megatron.training.checkpointing import load_checkpoint
from megatron.training.checkpointing import save_checkpoint
from megatron.training.checkpointing import checkpoint_exists
from megatron.legacy.model import Float16Module
from megatron.core.distributed import DistributedDataParallelConfig
from megatron.core.distributed import DistributedDataParallel as DDP
from megatron.core.distributed.custom_fsdp import FullyShardedDataParallel as custom_FSDP
try:
    from megatron.core.distributed import TorchFullyShardedDataParallel as torch_FSDP

    HAVE_FSDP2 = True
except ImportError:
    HAVE_FSDP2 = False

from megatron.core.distributed import finalize_model_grads
from megatron.core.enums import ModelType
from megatron.core.optimizer import get_megatron_optimizer, OptimizerConfig
from megatron.core.rerun_state_machine import (
    get_rerun_state_machine,
    destroy_rerun_state_machine,
    RerunDataIterator,
    RerunMode,
)
from megatron.training.initialize import initialize_megatron
from megatron.training.initialize import write_args_to_tensorboard
from megatron.training.initialize import set_jit_fusion_options
from megatron.training.utils import (
    get_batch_on_this_cp_rank,
    get_batch_on_this_tp_rank,
)
from megatron.legacy.data.data_samplers import build_pretraining_data_loader
from megatron.core.optimizer_param_scheduler import OptimizerParamScheduler
from megatron.core.transformer.moe import upcycling_utils
from megatron.core.transformer.moe.moe_utils import track_moe_metrics
from megatron.core.parallel_state import (
    destroy_global_memory_buffer,
    destroy_model_parallel,
)
from megatron.core.pipeline_parallel import get_forward_backward_func
from megatron.core.num_microbatches_calculator import (
    destroy_num_microbatches_calculator,
    get_current_global_batch_size,
    get_current_running_global_batch_size,
    get_num_microbatches,
    update_num_microbatches)

from .async_utils import maybe_finalize_async_save
from .utils import (
    append_to_progress_log,
    calc_params_l2_norm,
    check_adlr_autoresume_termination,
    logical_and_across_model_parallel_group,
    reduce_max_stat_across_model_parallel_group,
    is_last_rank,
    print_rank_0,
    print_rank_last,
    report_memory,
    unwrap_model,
    update_use_dist_ckpt,
)
from .global_vars import (
    destroy_global_vars,
    get_args,
    get_signal_handler,
    get_timers,
    get_tensorboard_writer,
    get_wandb_writer,
    get_one_logger,
)
from . import one_logger_utils

from . import ft_integration

stimer = StragglerDetector()


def destroy_global_state():
    destroy_global_vars()
    destroy_num_microbatches_calculator()
    destroy_global_memory_buffer()
    destroy_model_parallel()
    destroy_rerun_state_machine()


def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0(f'[{string}] datetime: {time_str} ')


def num_floating_point_operations(args, batch_size):
    # Attention projection size.
    query_projection_size = args.kv_channels * args.num_attention_heads
    query_projection_to_hidden_size_ratio = query_projection_size / args.hidden_size
    # Group Query Attention.
    if not args.group_query_attention:
        args.num_query_groups = args.num_attention_heads
    # MoE.
    num_experts_routed_to = 1 if args.num_experts is None else args.moe_router_topk
    gated_linear_multiplier = 3 / 2 if args.swiglu else 1
    shared_expert_ffn_hidden_size = (
        0
        if args.moe_shared_expert_intermediate_size is None
        else args.moe_shared_expert_intermediate_size
    )
    if args.num_experts is None:
        ffn_hidden_size = args.ffn_hidden_size
    else:
        ffn_hidden_size = args.moe_ffn_hidden_size

    # The 12x term below comes from the following factors; for more details, see
    # "APPENDIX: FLOATING-POINT OPERATIONS" in https://arxiv.org/abs/2104.04473.
    # - 3x: Each GEMM in the model needs to be performed 3 times (forward pass,
    #       backward wgrad [weight gradient], backward dgrad [data gradient]).
    # - 2x: GEMMs of a particular size are stacked twice in the standard Transformer model
    #       architectures implemented in this codebase (e.g., h->ffn_h GEMM and ffn_h->h GEMM
    #       in MLP layer).
    # - 2x: A GEMM of a m*n tensor with a n*k tensor requires 2mnk floating-point operations.
    expansion_factor = 3 * 2 * 2

    return (
        expansion_factor
        * batch_size
        * args.seq_length
        * args.num_layers
        * args.hidden_size
        * args.hidden_size
        * (
            # Attention.
            (
                (
                    1
                    + (args.num_query_groups / args.num_attention_heads)
                    + (args.seq_length / args.hidden_size)
                ) * query_projection_to_hidden_size_ratio
            )
            # MLP.
            + (
                (ffn_hidden_size / args.hidden_size)
                * num_experts_routed_to
                * gated_linear_multiplier
            )
            # Shared Experts.
            + ((shared_expert_ffn_hidden_size / args.hidden_size) * gated_linear_multiplier)
            # Logit.
            + (args.padded_vocab_size / (2 * args.num_layers * args.hidden_size))
        )
    )


def get_start_time_from_progress_log():
    """
    Gets start time of earliest job with same world size. Also returns the number
    of floating-point operations completed in last saved checkpoint.
    """
    args = get_args()
    assert args.save is not None
    progress_log_filename = os.path.join(args.save, "progress.txt")

    # start_time is time when job with same world size started.
    # start_num_floating_point_operations is the number of floating-point operations
    # completed when this job started.
    # latest_num_floating_point_operations is the number of floating-point operations
    # completed in most recent saved checkpoint.
    start_time = None
    start_num_floating_point_operations = None
    latest_num_floating_point_operations = 0

    def _get_field(string, type):
        return type(string.split(': ')[1])

    with open(progress_log_filename, 'r') as f:
        for line in f:
            line = line.strip()
            line_tokens = line.split('\t')
            world_size_in_line = _get_field(line_tokens[2], int)
            if line_tokens[3] == "Saved checkpoint":
                latest_num_floating_point_operations = \
                    _get_field(line_tokens[7], float)
            if world_size_in_line != args.world_size:
                # Re-start search if we see a different world size.
                start_time = None
                start_num_floating_point_operations = None
                continue
            if line_tokens[3] == "Starting job":
                if start_time is None:
                    start_time = line_tokens[0]
                    start_num_floating_point_operations = \
                        latest_num_floating_point_operations
    assert start_time is not None and start_num_floating_point_operations is not None, \
        "Should have seen at least one 'Starting job' entry with same world_size"
    return datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S'), \
        start_num_floating_point_operations


def preprocess_common_state_dict(common_state_dict):
    import copy
    # Convert args key of type namespace to dictionary
    preprocessed_common_state_dict = copy.deepcopy(common_state_dict)
    preprocessed_common_state_dict['args'] = vars(preprocessed_common_state_dict['args'])
    # Remove rank and local rank from state dict if it exists, since they are expected to be different
    preprocessed_common_state_dict['args'].pop('local_rank', None)
    preprocessed_common_state_dict['args'].pop('rank', None)
    return preprocessed_common_state_dict


def pretrain(
    train_valid_test_dataset_provider,
    model_provider,
    model_type,
    forward_step_func,
    process_non_loss_data_func=None,
    extra_args_provider=None,
    args_defaults={},
    get_embedding_ranks=None,
    get_position_embedding_ranks=None,
    non_loss_data_func=None,
):
    """Main training program.

    This function will run the followings in the order provided:
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
        3) call train_val_test_data_provider to get train/val/test datasets.
        4) train the model using the forward_step_func.

    Args:
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        model_type: an enum that specifies the type of model being trained.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
        get_embedding_ranks (TODO):
        get_position_embedding_ranks (TODO):
        non_loss_data_func (callable): A custom function to call during evaluation.
            It can run e.g. benchmarks.
    """

    # Initalize and get arguments, timers, and Tensorboard writer.
    initialize_megatron(
        extra_args_provider=extra_args_provider,
        args_defaults=args_defaults,
        get_embedding_ranks=get_embedding_ranks,
        get_position_embedding_ranks=get_position_embedding_ranks
    )

    args = get_args()
    timers = get_timers()

    if args.log_progress:
        append_to_progress_log("Starting job")

    # Initialize fault tolerance
    # NOTE: ft_integration functions other than `setup` are no-op if the FT is not initialized
    if args.enable_ft_package:
        ft_integration.setup(args)
        ft_integration.maybe_setup_simulated_fault()

    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()

    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.tensor([_TRAIN_START_TIME],
                                     dtype=torch.double,
                                     device='cuda')
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()

    app_metrics = {}
    app_metrics['app_start_time'] = round(_TRAIN_START_TIME * 1000.0)
    app_metrics['app_model_init_start_time'] = round(_TRAIN_START_TIME * 1000.0)

    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')
    app_metrics['app_model_init_finish_time'] = one_logger_utils.get_timestamp_in_ms()

    # Track E2E metrics on pretrain start
    one_logger_utils.on_pretrain_start()

    # Context used for persisting some state between checkpoint saves.
    if args.non_persistent_ckpt_type == 'local':
        try:
            from nvidia_resiliency_ext.checkpointing.local.ckpt_managers.local_manager import \
                LocalCheckpointManager
            from nvidia_resiliency_ext.checkpointing.local.replication.group_utils import \
                parse_group_sequence, GroupWrapper
            from nvidia_resiliency_ext.checkpointing.local.replication.strategies import \
                CliqueReplicationStrategy
        except ModuleNotFoundError:
            raise RuntimeError("The 'nvidia_resiliency_ext' module is required for local "
                               "checkpointing but was not found. Please ensure it is installed.")

        if args.replication:
            repl_strategy = CliqueReplicationStrategy.from_replication_params(
                args.replication_jump,
                args.replication_factor
            )
        else:
            repl_strategy = None

        checkpointing_context = {
            'local_checkpoint_manager': LocalCheckpointManager(args.non_persistent_local_ckpt_dir,
                                                               repl_strategy=repl_strategy
                                                               )
        }
    else:
        checkpointing_context = {}

    # Model, optimizer, and learning rate.
    timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
    app_metrics['app_build_optimizer_start_time'] = one_logger_utils.get_timestamp_in_ms()
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
        model_provider, model_type, checkpointing_context=checkpointing_context)

    timers('model-and-optimizer-setup').stop()
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
    app_metrics['app_build_optimizer_finish_time'] = one_logger_utils.get_timestamp_in_ms()
    config = get_model_config(model[0])

    # Data stuff.
    app_metrics['app_build_dataiters_start_time'] = one_logger_utils.get_timestamp_in_ms()
    timers('train/valid/test-data-iterators-setup', log_level=0).start(
        barrier=True)
    if args.virtual_pipeline_model_parallel_size is not None:
        train_data_iterator = []
        valid_data_iterator = []
        test_data_iterator = []
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            iterators = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
            train_data_iterator.append(iterators[0])
            valid_data_iterator.append(iterators[1])
            test_data_iterator.append(iterators[2])
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
    print_datetime('after dataloaders are built')
    app_metrics['app_build_dataiters_finish_time'] = one_logger_utils.get_timestamp_in_ms()

    # Track if training is enabled. Can only be done once args.do_train is assigned after dataloader is built.
    one_logger_utils.track_config_flags(args.train_iters, args.skip_train, args.do_train,
                                        args.do_valid, args.do_test, args.dataloader_type,
                                        args.retro_project_dir, args.retro_cyclic_train_iters)

    # Print setup timing.
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup',
                'train/valid/test-data-iterators-setup'], barrier=True)

    one_logger = get_one_logger()
    one_logger and one_logger.log_metrics(app_metrics)

    if not args.skip_train:
        print_rank_0('training ...')

        if args.dataloader_type == 'cyclic' and args.retro_project_dir:
            assert args.retro_cyclic_train_iters is not None
            args.train_iters = args.retro_cyclic_train_iters
            print_rank_0("retro cyclic train iters : %d" % args.train_iters)

        iteration = 0
        if args.do_train and args.train_iters > 0:
            iteration, num_floating_point_operations_so_far = train(
                forward_step_func,
                model, optimizer, opt_param_scheduler,
                train_data_iterator, valid_data_iterator,
                process_non_loss_data_func, config, checkpointing_context,
                non_loss_data_func)

        print_datetime('after training is done')

        if args.save and iteration != 0 and iteration % args.save_interval != 0:
            save_checkpoint(iteration, model, optimizer, opt_param_scheduler,
                            num_floating_point_operations_so_far, checkpointing_context,
                            train_data_iterator=train_data_iterator,
                            preprocess_common_state_dict_fn=preprocess_common_state_dict)

        one_logger and one_logger.log_metrics({
            'app_train_loop_finish_time': one_logger_utils.get_timestamp_in_ms()
        })

    else:
        print_rank_0('skipping training (--skip-train is on) ...')

        iteration = args.iteration

    if args.do_valid:
        prefix = f'iteration {iteration} on validation set'
        evaluate_and_print_results(prefix, forward_step_func,
                                   valid_data_iterator, model,
                                   iteration, process_non_loss_data_func, config,
                                   verbose=True, write_to_tensorboard=not args.skip_train,
                                   non_loss_data_func=non_loss_data_func)

    if args.do_test:
        prefix = f'iteration {iteration} on test set'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
                                   iteration, process_non_loss_data_func, config,
                                   verbose=True, write_to_tensorboard=not args.skip_train,
                                   non_loss_data_func=non_loss_data_func)

    wandb_writer = get_wandb_writer()
    if wandb_writer:
        wandb_writer.finish()

    ft_integration.on_checkpointing_start()
    maybe_finalize_async_save(blocking=True, terminate=True)
    ft_integration.on_checkpointing_end(is_async_finalization=True)

    one_logger and one_logger.log_metrics({
        'app_finish_time': one_logger_utils.get_timestamp_in_ms()
    })

    ft_integration.shutdown()
    one_logger_utils.finish()


def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]) and consumed_samples <= args.train_samples:
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
            iterations += 1
        # Reset
        update_num_microbatches(0, consistency_check=False)
        # Constant phase
        # Note that we throw away any partial last batch.
        if args.train_samples > consumed_samples:
            iterations += (args.train_samples - consumed_samples) // \
                          args.global_batch_size
        args.train_iters = iterations

    print_rank_0(f'setting training iterations to {args.train_iters}')


def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
    """Build the model."""
    args = get_args()
    args.model_type = model_type

    # Build model.
    def build_model():
        if mpu.get_pipeline_model_parallel_world_size() > 1 and \
        args.virtual_pipeline_model_parallel_size is not None:
            assert model_type != ModelType.encoder_and_decoder, \
                "Interleaved schedule not supported for model with both encoder and decoder"
            model = []
            for i in range(args.virtual_pipeline_model_parallel_size):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                # Set pre_process and post_process only after virtual rank is set.
                pre_process = mpu.is_pipeline_first_stage()
                post_process = mpu.is_pipeline_last_stage()
                this_model = model_provider_func(
                    pre_process=pre_process,
                    post_process=post_process
                )
                this_model.model_type = model_type
                model.append(this_model)
        else:
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
            add_encoder = True
            add_decoder = True
            if model_type == ModelType.encoder_and_decoder:
                if mpu.get_pipeline_model_parallel_world_size() > 1:
                    rank = mpu.get_pipeline_model_parallel_rank()
                    first_decoder_rank = args.encoder_pipeline_model_parallel_size
                    world_size = mpu.get_pipeline_model_parallel_world_size()
                    pre_process = rank == 0 or rank == first_decoder_rank
                    post_process = (rank == (first_decoder_rank - 1)) or (rank == (world_size - 1))
                    add_encoder = mpu.is_inside_encoder(rank)
                    add_decoder = mpu.is_inside_decoder(rank)
                model = model_provider_func(
                    pre_process=pre_process,
                    post_process=post_process,
                    add_encoder=add_encoder,
                    add_decoder=add_decoder)
            else:
                model = model_provider_func(
                    pre_process=pre_process,
                    post_process=post_process
                )
            model.model_type = model_type
        return model
    if args.init_model_with_meta_device:
        with torch.device('meta'):
            model = build_model()
    else:
        model = build_model()

    if not isinstance(model, list):
        model = [model]

    # Set tensor model parallel attributes if not set.
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
    for model_module in model:
        for param in model_module.parameters():
            tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

    # Print number of parameters.
    num_parameters = sum(
        [sum([p.nelement() for p in model_module.parameters()])
         for model_module in model]
    )
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on (tensor, pipeline) '
              'model parallel rank ({}, {}): {}'.format(
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
            num_parameters), flush=True)

    # GPU allocation.
    # For FSDP2, we don't allocate GPU memory here. We allocate GPU memory
    # in the fully_shard function of FSDP2 instead.
    if not (args.use_torch_fsdp2 and args.use_cpu_initialization) and not args.init_model_with_meta_device:
        for model_module in model:
            model_module.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]

    # The model_module.bfloat16()/model_module.half() above will call the inplace copy of TE's
    # Float8Tensor, which will write an unwanted value (amax calculated from the current fp8
    # param) to its amax_history. The following logic will correct the amax_history back.
    for model_module in model:
        for param in model_module.parameters():
            if is_float8tensor(param) and param._fp8_meta is not None:
                fp8_meta = param._fp8_meta['scaling_fwd']
                fp8_meta_index = param._fp8_meta_index
                if hasattr(param, 'get_high_precision_init_val'):
                    fp8_meta.amax_history[0][fp8_meta_index].copy_(
                        param.get_high_precision_init_val().abs().max()
                    )
                else:
                    fp8_meta.amax_history[0][fp8_meta_index] = 0

    if wrap_with_ddp:
        if args.use_torch_fsdp2:
            assert HAVE_FSDP2, "Torch FSDP2 requires torch>=2.4.0"
            DP = torch_FSDP
        elif args.use_custom_fsdp:
            DP = custom_FSDP
        else:
            DP = DDP

        config = get_model_config(model[0])

        kwargs = {}
        for f in dataclasses.fields(DistributedDataParallelConfig):
            if hasattr(args, f.name):
                kwargs[f.name] = getattr(args, f.name)
        kwargs['grad_reduce_in_fp32'] = args.accumulate_allreduce_grads_in_fp32
        kwargs['check_for_nan_in_grad'] = args.check_for_nan_in_loss_and_grad
        kwargs['check_for_large_grads'] = args.check_for_large_grads
        if args.ddp_num_buckets is not None:
            assert args.ddp_bucket_size is None, \
                "Cannot specify both --ddp-num-buckets and --ddp-bucket-size"
            assert args.ddp_num_buckets > 0, \
                "--ddp-num-buckets must be greater than 0"
            kwargs['bucket_size'] = num_parameters // args.ddp_num_buckets
        else:
            kwargs['bucket_size'] = args.ddp_bucket_size
        kwargs['pad_buckets_for_high_nccl_busbw'] = args.ddp_pad_buckets_for_high_nccl_busbw
        kwargs['average_in_collective'] = args.ddp_average_in_collective
        if args.use_custom_fsdp and args.use_precision_aware_optimizer:
            kwargs["preserve_fp32_weights"] = False
        ddp_config = DistributedDataParallelConfig(**kwargs)

        if not getattr(args, "use_torch_fsdp2", False):
            # In the custom FSDP and DDP use path, we need to initialize the bucket size.

            # If bucket_size is not provided as an input, use sane default.
            # If using very large dp_sizes, make buckets larger to ensure that chunks used in NCCL
            # ring-reduce implementations are large enough to remain bandwidth-bound rather than
            # latency-bound.
            if ddp_config.bucket_size is None:
                ddp_config.bucket_size = max(
                    40000000, 1000000 * mpu.get_data_parallel_world_size(with_context_parallel=True)
                )
            # Set bucket_size to infinity if overlap_grad_reduce is False.
            if not ddp_config.overlap_grad_reduce:
                ddp_config.bucket_size = None

        model = [DP(config=config,
                     ddp_config=ddp_config,
                     module=model_chunk,
                     # Turn off bucketing for model_chunk 2 onwards, since communication for these
                     # model chunks is overlapped with compute anyway.
                     disable_bucketing=(model_chunk_idx > 0) or args.overlap_param_gather_with_optimizer_step)
                 for (model_chunk_idx, model_chunk) in enumerate(model)]

        # Broadcast params from data parallel src rank to other data parallel ranks.
        if args.data_parallel_random_init:
            for model_module in model:
                model_module.broadcast_params()

    return model


def get_optimizer_param_scheduler(optimizer):
    """Build the learning rate scheduler."""
    args = get_args()

    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
        wsd_decay_steps = None
        if args.lr_wsd_decay_iters is not None:
            wsd_decay_steps = args.lr_wsd_decay_iters * args.global_batch_size
        if args.lr_warmup_fraction is not None:
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
        else:
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
        update_train_iters(args)
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
        wsd_decay_steps = args.lr_wsd_decay_samples
        if args.lr_warmup_fraction is not None:
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
        else:
            lr_warmup_steps = args.lr_warmup_samples
    else:
        raise Exception(
            'either train-iters or train-samples should be provided.')

    opt_param_scheduler = OptimizerParamScheduler(
        optimizer,
        init_lr=args.lr_warmup_init,
        max_lr=args.lr,
        min_lr=args.min_lr,
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
        wd_incr_steps=wd_incr_steps,
        wd_incr_style=args.weight_decay_incr_style,
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler,
        wsd_decay_steps=wsd_decay_steps,
        lr_wsd_decay_style=args.lr_wsd_decay_style)

    return opt_param_scheduler


def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0,
                              checkpointing_context=None):
    """Setup model and optimizer."""
    args = get_args()
    timers = get_timers()
    one_logger = get_one_logger()

    model = get_model(model_provider_func, model_type)
    unwrapped_model = unwrap_model(model)

    kwargs = {}
    for f in dataclasses.fields(OptimizerConfig):
        if hasattr(args, f.name):
            kwargs[f.name] = getattr(args, f.name)
    config = OptimizerConfig(**kwargs)
    config.timers = timers
    optimizer = get_megatron_optimizer(config, model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult,
                                       use_gloo_process_groups=args.enable_gloo_process_groups)
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)

    if args.moe_use_upcycling:
        torch.distributed.barrier()
        assert not checkpoint_exists(
            args.save
        ), ("The upcycling destination directory already exists. "
            "Please check if --moe-use-upcycling is mistakenly enabled. "
            "Upcycling should only be set for the first run when converting the dense model. "
            "All subsequent runs should remove this flag. ")
        num_experts = args.num_experts
        args.num_experts = None
        expert_model_parallel_size = args.expert_model_parallel_size
        args.expert_model_parallel_size = 1
        dense_model_for_upcycling = get_model(model_provider_func, model_type)
        args.num_experts = num_experts
        args.expert_model_parallel_size = expert_model_parallel_size
        _, args.num_floating_point_operations_so_far = upcycling_utils.load_and_upcycle_model(
            load_checkpoint,
            unwrapped_model,
            dense_model_for_upcycling,
            load_kwargs = {'model': dense_model_for_upcycling, 'optimizer': None, 'opt_param_scheduler': None}
        )
        args.iteration = 1
        save_checkpoint(args.iteration, model, None, None, args.num_floating_point_operations_so_far)
        torch.distributed.barrier()
        del dense_model_for_upcycling
        if (args.fp16 or args.bf16) and optimizer is not None:
            optimizer.reload_model_params()
        print_rank_0(f'Upcycled checkpoint saved to {args.save}')

    if (args.load is not None or args.pretrained_checkpoint is not None) and not args.moe_use_upcycling:
        one_logger and one_logger.log_metrics({
            'load_checkpoint_start_time': one_logger_utils.get_timestamp_in_ms()
        })
        timers('load-checkpoint', log_level=0).start(barrier=True)

        args.iteration, args.num_floating_point_operations_so_far = load_checkpoint(
                model, optimizer, opt_param_scheduler, checkpointing_context=checkpointing_context,
                skip_load_to_model_and_opt=HAVE_FSDP2 and args.use_torch_fsdp2)
        timers('load-checkpoint').stop(barrier=True)
        timers.log(['load-checkpoint'])
        one_logger and one_logger.log_metrics({
            'load_checkpoint_finish_time': one_logger_utils.get_timestamp_in_ms(),
            'load_checkpoint_time': timers('load-checkpoint').active_time()
        })
    else:
        args.iteration = 0
        args.num_floating_point_operations_so_far = 0

    # get model without FP16 and/or DDP wrappers
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
        print_rank_0("Initializing ICT from pretrained BERT model")
        unwrapped_model[0].init_state_dict_from_bert()
        if args.fp16:
            optimizer.reload_model_params()

    # Convert checkpoint format.
    if args.ckpt_convert_format is not None:
        load_ckpt_format = args.ckpt_format
        args.ckpt_format = args.ckpt_convert_format
        args.save = os.path.join(args.ckpt_convert_save, args.ckpt_convert_format)
        update_use_dist_ckpt(args)

        save_checkpoint(args.iteration, model, optimizer, opt_param_scheduler,
                        args.num_floating_point_operations_so_far,
                        preprocess_common_state_dict_fn=preprocess_common_state_dict)

        print_rank_0("> converted checkpoint: %s -> %s." % (load_ckpt_format, args.ckpt_format))
        torch.distributed.barrier()
        exit()

    return model, optimizer, opt_param_scheduler


def dummy_train_step(data_iterator):
    """Single dummy training step."""
    num_microbatches = get_num_microbatches()
    for _ in range(num_microbatches):
        # Re-use methods used in get_batch() from pretrain_{gpt, mamba}.py.
        batch = get_batch_on_this_tp_rank(data_iterator)
        batch = get_batch_on_this_cp_rank(batch)


def train_step(forward_step_func, data_iterator,
               model, optimizer, opt_param_scheduler, config):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    rerun_state_machine = get_rerun_state_machine()
    while rerun_state_machine.should_run_forward_backward(data_iterator):
        # Set grad to zero.
        for model_chunk in model:
            model_chunk.zero_grad_buffer()
        optimizer.zero_grad()

        # Forward pass.
        forward_backward_func = get_forward_backward_func()
        losses_reduced = forward_backward_func(
            forward_step_func=forward_step_func,
            data_iterator=data_iterator,
            model=model,
            num_microbatches=get_num_microbatches(),
            seq_length=args.seq_length,
            micro_batch_size=args.micro_batch_size,
            decoder_seq_length=args.decoder_seq_length,
            forward_only=False)
    should_checkpoint, should_exit, exit_code = rerun_state_machine.should_checkpoint_and_exit()
    if should_exit:
        return {}, True, should_checkpoint, should_exit, exit_code, None, None

    # Empty unused memory.
    if args.empty_unused_memory_level >= 1:
        torch.cuda.empty_cache()

    # Vision gradients.
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        unwrapped_model = unwrap_model(model[0])
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

    # Update parameters.

    timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
    timers('optimizer').stop()

    # when freezing sub-models we may have a mixture of successful and unsucessful ranks,
    # so we must gather across mp ranks
    update_successful = logical_and_across_model_parallel_group(update_successful)
    # grad_norm and num_zeros_in_grad will be None on ranks without trainable params,
    # so we must gather across mp ranks
    grad_norm = reduce_max_stat_across_model_parallel_group(grad_norm)
    if args.log_num_zeros_in_grad:
        num_zeros_in_grad = reduce_max_stat_across_model_parallel_group(num_zeros_in_grad)

    # Vision momentum.
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        unwrapped_model = unwrap_model(model[0])
        unwrapped_model.update_momentum(args.curr_iteration)

    # Update learning rate.
    if update_successful:
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        opt_param_scheduler.step(increment=increment)
        skipped_iter = 0
    else:
        skipped_iter = 1

    # Empty unused memory.
    if args.empty_unused_memory_level >= 2:
        torch.cuda.empty_cache()

    if mpu.is_pipeline_last_stage(ignore_virtual=True):
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0].keys():
            numerator = 0
            denominator = 0
            for x in losses_reduced:
                val = x[key]
                # there is one dict per microbatch. in new reporting, we average
                # over the total number of tokens across the global batch.
                if isinstance(val, tuple) or isinstance(val, list):
                    numerator += val[0]
                    denominator += val[1]
                else:
                    # legacy behavior. we average over the number of microbatches,
                    # and so the denominator is 1.
                    numerator += val
                    denominator += 1
            loss_reduced[key] = numerator / denominator
        return loss_reduced, skipped_iter, should_checkpoint, should_exit, exit_code, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, should_checkpoint, should_exit, exit_code, grad_norm, num_zeros_in_grad


def training_log(loss_dict, total_loss_dict, learning_rate, decoupled_learning_rate, iteration,
                 loss_scale, report_memory_flag, skipped_iter,
                 grad_norm, params_norm, num_zeros_in_grad):
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
    wandb_writer = get_wandb_writer()
    one_logger = get_one_logger()

    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
    skipped_iters_key = 'skipped iterations'
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
    # Update losses and set nan iterations
    got_nan = False
    for key in loss_dict:
        if not skipped_iter:
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.tensor([0.0], dtype=torch.float, device='cuda')) + loss_dict[key]
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
            got_nan = got_nan or is_nan
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)

    # Logging.
    timers_to_log = [
        'forward-backward',
        'forward-compute',
        'backward-compute',
        'batch-generator',
        'forward-recv',
        'forward-send',
        'backward-recv',
        'backward-send',
        'forward-send-forward-recv',
        'forward-send-backward-recv',
        'backward-send-forward-recv',
        'backward-send-backward-recv',
        'forward-backward-send-forward-backward-recv',
        'layernorm-grads-all-reduce',
        'embedding-grads-all-reduce',
        'all-grads-sync',
        'params-all-gather',
        'optimizer-copy-to-main-grad',
        'optimizer-unscale-and-check-inf',
        'optimizer-clip-main-grad',
        'optimizer-count-zeros',
        'optimizer-inner-step',
        'optimizer-copy-main-to-model-params',
        'optimizer']

    # Calculate batch size.
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

    # Track app tag & app tag ID
    one_logger_utils.track_app_tag(batch_size, args.world_size, args.seq_length)

    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

    # learning rate will be None on ranks without trainable params, so we must gather across mp ranks
    learning_rate = reduce_max_stat_across_model_parallel_group(learning_rate)
    # Tensorboard values.
    # Timer requires all the ranks to call.
    if args.log_timers_to_tensorboard and \
       (iteration % args.tensorboard_log_interval == 0):
        timers.write(timers_to_log, writer, iteration,
                     normalizer=total_iterations)
    if writer and (iteration % args.tensorboard_log_interval == 0):
        if wandb_writer:
            wandb_writer.log({'samples vs steps': args.consumed_train_samples},
                             iteration)
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
                            args.consumed_train_samples)
        if wandb_writer:
            wandb_writer.log({'learning-rate': learning_rate}, iteration)
        if args.decoupled_lr is not None:
            writer.add_scalar('decoupled-learning-rate', decoupled_learning_rate, iteration)
        if args.skipped_train_samples > 0:
            writer.add_scalar('skipped-train-samples', args.skipped_train_samples, iteration)
            if wandb_writer:
                wandb_writer.log({'skipped-train-samples': args.skipped_train_samples}, iteration)
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
                          args.consumed_train_samples)
        if wandb_writer:
            wandb_writer.log({'batch-size': batch_size}, iteration)
        for key in loss_dict:
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
                              args.consumed_train_samples)
            if wandb_writer:
                wandb_writer.log({key: loss_dict[key]}, iteration)
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
            if wandb_writer:
                wandb_writer.log({'loss-scale': loss_scale}, iteration)
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
            if wandb_writer:
                wandb_writer.log({'world-size': args.world_size}, iteration)
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
            if wandb_writer:
                wandb_writer.log({'grad-norm': grad_norm}, iteration)
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
                              args.consumed_train_samples)
            if wandb_writer:
                wandb_writer.log({'num-zeros': num_zeros_in_grad}, iteration)
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
            if wandb_writer:
                wandb_writer.log({'params-norm': params_norm}, iteration)
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-max-allocated-bytes",
                mem_stats["allocated_bytes.all.peak"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
    if args.num_experts is not None:
        moe_loss_scale = 1 / get_num_microbatches()
        track_moe_metrics(moe_loss_scale, iteration, writer, wandb_writer, total_loss_dict, args.moe_per_layer_logging)

    if iteration % args.log_interval == 0:
        if args.record_memory_history and is_last_rank():
            snapshot = torch.cuda.memory._snapshot()
            from pickle import dump
            with open(args.memory_snapshot_path, 'wb') as f:
                dump(snapshot, f)

        elapsed_time = timers('interval-time').elapsed(barrier=True)
        elapsed_time_per_iteration = elapsed_time / total_iterations

        throughput = num_floating_point_operations(args, batch_size) / (
            elapsed_time_per_iteration * 10**12 * args.world_size)

        one_logger_utils.track_e2e_metrics(args.log_throughput, throughput)

        if args.log_timers_to_tensorboard:
            if writer:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
            if wandb_writer:
                wandb_writer.log({'iteration-time': elapsed_time_per_iteration},
                                 iteration)
        log_string = f" [{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}]"
        log_string += ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
        log_string += ' consumed samples: {:12d} |'.format(
            args.consumed_train_samples)
        if args.skipped_train_samples > 0:
            log_string += ' skipped samples: {:12d} |'.format(
                args.skipped_train_samples)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time_per_iteration * 1000.0)
        if args.log_throughput:
            log_string += f' throughput per GPU (TFLOP/s/GPU): {throughput:.1f} |'
            if args.log_timers_to_tensorboard:
                if writer:
                    writer.add_scalar('throughput', throughput, iteration)
                if wandb_writer:
                    wandb_writer.log({'throughput': throughput}, iteration)
        # Decoupled_learning_rate should be not None only on first and last pipeline stage.
        log_string += f' learning rate: {learning_rate:.6E} |'
        if args.decoupled_lr is not None and (mpu.is_pipeline_first_stage(ignore_virtual=True) or
                                              mpu.is_pipeline_last_stage(ignore_virtual=True)):
            assert decoupled_learning_rate is not None
            log_string += f' decoupled learning rate: {decoupled_learning_rate:.6E} |'
        else:
            assert decoupled_learning_rate is None
        log_string += f' global batch size: {batch_size:5d} |'
        for key in total_loss_dict:
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.tensor([0.0], dtype=torch.float, device='cuda')
        log_string += f' loss scale: {loss_scale:.1f} |'
        if grad_norm is not None:
            log_string += f' grad norm: {grad_norm:.3f} |'
        if num_zeros_in_grad is not None:
            log_string += f' num zeros: {num_zeros_in_grad} |'
        if params_norm is not None:
            log_string += f' params norm: {params_norm:.3f} |'
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
        log_string += ' number of nan iterations: {:3d} |'.format(
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
        total_loss_dict[skipped_iters_key] = 0
        total_loss_dict[nan_iters_key] = 0
        print_rank_last(log_string)
        if report_memory_flag:
            # Report memory after optimizer state has been initialized.
            if torch.distributed.get_rank() == 0:
                num_microbatches = get_num_microbatches()
                report_theoretical_memory(args, num_microbatches=num_microbatches, verbose=True)
            report_memory(f'(after {iteration} iterations)')
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


def compute_throughputs_and_append_to_progress_log(iteration,
                                                   num_floating_point_operations_so_far):
    args = get_args()
    if args.save is None:
        return

    # Compute job throughput.
    # args.num_floating_point_operations_so_far keeps track of floating-point operations
    # completed at the start of job.
    global _TRAIN_START_TIME
    job_throughput = \
        (num_floating_point_operations_so_far -
         args.num_floating_point_operations_so_far) / (
            (time.time() - _TRAIN_START_TIME) * 10**12 * args.world_size)

    # Compute cumulative throughput since jobs of this world size were launched.
    # `get_start_time_from_progress_log` returns start time and number of floating-point
    # operations of first job of this world size.
    start_time, start_num_floating_point_operations = get_start_time_from_progress_log()
    elapsed_time = (datetime.now() - start_time).total_seconds()
    cumulative_throughput = \
        (num_floating_point_operations_so_far -
         start_num_floating_point_operations) / (
            elapsed_time * 10**12 * args.world_size)

    tokens_so_far = args.consumed_train_samples * args.seq_length
    saved_ckpt_prefix = 'Saving async checkpoint' if args.async_save else 'Saved checkpoint'
    append_to_progress_log(f"{saved_ckpt_prefix}\tIteration: {iteration}\t"
                           f"Job throughput: {job_throughput:.1f} TFLOP/s/GPU\t"
                           f"Cumulative throughput: {cumulative_throughput:.1f} TFLOP/s/GPU\t"
                           f"Floating-point operations: {num_floating_point_operations_so_far:.2e}\t"
                           f"Tokens (in billions): {tokens_so_far / 10**9:.2f}")


def enable_forward_pre_hook(model_chunks):
    for model_chunk in model_chunks:
        assert isinstance(model_chunk, DDP)
        model_chunk.enable_forward_pre_hook()


def disable_forward_pre_hook(model_chunks, param_sync=True):
    for model_chunk in model_chunks:
        assert isinstance(model_chunk, DDP)
        model_chunk.disable_forward_pre_hook(param_sync=param_sync)


def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler,
                             num_floating_point_operations_so_far, checkpointing_context,
                             non_persistent_ckpt=False, train_data_iterator=None):
    args = get_args()
    timers = get_timers()

    # Stop timer to get accurate train interval time and exclude checkpointing duration
    timers('interval-time').stop()
    # Extra barrier is added to make sure all ranks report the max time.
    timer_key = 'save-checkpoint-non-persistent' if non_persistent_ckpt else 'save-checkpoint'
    timers(timer_key, log_level=0).start(barrier=True)

    # Log E2E metrics before save-checkpoint
    one_logger_utils.track_e2e_metrics()
    if should_disable_forward_pre_hook(args):
        disable_forward_pre_hook(model)
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler,
                    num_floating_point_operations_so_far, checkpointing_context,
                    non_persistent_ckpt=non_persistent_ckpt, train_data_iterator=train_data_iterator,
                    preprocess_common_state_dict_fn=preprocess_common_state_dict)
    if should_disable_forward_pre_hook(args):
        enable_forward_pre_hook(model)
    timers(timer_key).stop(barrier=True)
    timers.log([timer_key])

    # Log E2E metrics after save-checkpoint
    one_logger_utils.track_e2e_metrics()
    save_checkpoint_duration = timers(timer_key).elapsed()
    one_logger_utils.on_save_checkpoint_end(save_checkpoint_duration, iteration, args.async_save)

    if args.log_progress and not non_persistent_ckpt:
        compute_throughputs_and_append_to_progress_log(iteration,
                                                       num_floating_point_operations_so_far)

    # Recover timing
    timers('interval-time', log_level=0).start(barrier=True)


def post_training_step_callbacks(model, optimizer, opt_param_scheduler, iteration, prof,
                                 num_floating_point_operations_since_last_log_event):
    """Run all post-training-step functions (e.g., FT heartbeats, GC)."""
    args = get_args()

    # Bring CPU and GPU back in sync if on right iteration.
    if args.train_sync_interval and iteration % args.train_sync_interval == 0:
        torch.cuda.synchronize()

    # Straggler detector.
    if iteration % args.log_interval == 0 and args.log_straggler:
        stimer.report(num_floating_point_operations_since_last_log_event, args.log_interval)
        num_floating_point_operations_since_last_log_event = 0.0

    # Check weight hash across DP replicas.
    if args.check_weight_hash_across_dp_replicas_interval is not None and \
            iteration % args.check_weight_hash_across_dp_replicas_interval == 0:
        if should_disable_forward_pre_hook(args):
            disable_forward_pre_hook(model)
        assert check_param_hashes_across_dp_replicas(model, cross_check=True), \
            "Parameter hashes not matching across DP replicas"
        torch.distributed.barrier()
        print_rank_0(f">>> Weight hashes match after {iteration} iterations...")
        if should_disable_forward_pre_hook(args):
            enable_forward_pre_hook(model)

    # Autoresume.
    if args.adlr_autoresume and \
        (iteration % args.adlr_autoresume_interval == 0):
        check_adlr_autoresume_termination(iteration, model, optimizer,
                                          opt_param_scheduler)

    # Profiling.
    if args.profile and \
        iteration == args.profile_step_end and \
        torch.distributed.get_rank() in args.profile_ranks:
        if args.use_pytorch_profiler:
            assert prof is not None
            prof.stop()
        else:
            torch.cuda.cudart().cudaProfilerStop()

    # Manual garbage collection.
    if args.manual_gc:
        if args.manual_gc_interval != 0 and iteration % args.manual_gc_interval == 0:
            gc.collect()


def checkpoint_and_decide_exit(model, optimizer, opt_param_scheduler, iteration,
                               num_floating_point_operations_so_far, checkpointing_context,
                               train_data_iterator):
    """Save checkpoint and decide whether to exit based on arguments (e.g., if
    --exit-duration-in-mins is set). Actual exit happens in main training loop
    based on the return value of this function."""
    args = get_args()
    timers = get_timers()

    # Exit based on signal handler.
    saved_checkpoint = False
    if args.exit_signal_handler:
        signal_handler = get_signal_handler()
        if any(signal_handler.signals_received()):
            if args.save:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         opt_param_scheduler,
                                         num_floating_point_operations_so_far,
                                         checkpointing_context, train_data_iterator=train_data_iterator)
            print_datetime('exiting program after receiving SIGTERM.')

            return True

    # Regular save (persistent and non-persistent).
    if args.save and args.save_interval and \
        iteration % args.save_interval == 0:
        save_checkpoint_and_time(iteration, model, optimizer,
                                 opt_param_scheduler,
                                 num_floating_point_operations_so_far,
                                 checkpointing_context, train_data_iterator=train_data_iterator)
        saved_checkpoint = True

    elif args.save and args.non_persistent_save_interval and \
        iteration % args.non_persistent_save_interval == 0:
        save_checkpoint_and_time(iteration, model, optimizer,
                                 opt_param_scheduler,
                                 num_floating_point_operations_so_far,
                                 checkpointing_context,
                                 non_persistent_ckpt=True, train_data_iterator=train_data_iterator)
        saved_checkpoint = True

    # Exit based on duration.
    if args.exit_duration_in_mins:
        train_time = (time.time() - _TRAIN_START_TIME) / 60.0
        done_cuda = torch.tensor(
            [train_time > args.exit_duration_in_mins],
            dtype=torch.int, device='cuda')
        torch.distributed.all_reduce(
            done_cuda, op=torch.distributed.ReduceOp.MAX)
        done = done_cuda.item()
        if done:
            if args.save and not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         opt_param_scheduler,
                                         num_floating_point_operations_so_far,
                                         checkpointing_context, train_data_iterator=train_data_iterator)
            print_datetime(f'exiting program after {train_time} minutes')

            return True

    # Exit based on iterations.
    if args.exit_interval and iteration % args.exit_interval == 0:
        if args.save and not saved_checkpoint:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     opt_param_scheduler,
                                     num_floating_point_operations_so_far,
                                     checkpointing_context, train_data_iterator=train_data_iterator)
        torch.distributed.barrier()
        print_datetime(f'exiting program at iteration {iteration}')

        return True

    return False


def train(forward_step_func, model, optimizer, opt_param_scheduler,
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func, config, checkpointing_context, non_loss_data_func):
    """Training function: run train_step desired number of times, run validation, checkpoint."""
    args = get_args()
    timers = get_timers()
    one_logger = get_one_logger()

    # Write args to tensorboard
    write_args_to_tensorboard()

    # Turn on training mode which enables dropout.
    for model_module in model:
        model_module.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration
    # Make sure rerun_state_machine has the right iteration loaded from checkpoint.
    rerun_state_machine = get_rerun_state_machine()
    if rerun_state_machine.current_iteration != iteration:
        print_rank_0(f"Setting rerun_state_machine.current_iteration to {iteration}...")
        rerun_state_machine.current_iteration = iteration

    # Track E2E metrics at the start of training.
    one_logger_utils.on_train_start(iteration=iteration, consumed_train_samples=args.consumed_train_samples,
                                    train_samples=args.train_samples, seq_length=args.seq_length,
                                    train_iters=args.train_iters, save=args.save, async_save=args.async_save,
                                    log_throughput=args.log_throughput,
                                    num_floating_point_operations_so_far=args.num_floating_point_operations_so_far)

    num_floating_point_operations_so_far = args.num_floating_point_operations_so_far

    # Setup some training config params.
    config.grad_scale_func = optimizer.scale_loss
    config.timers = timers
    if isinstance(model[0], (custom_FSDP, DDP)) and args.overlap_grad_reduce:
        assert config.no_sync_func is None, \
            ('When overlap_grad_reduce is True, config.no_sync_func must be None; '
             'a custom no_sync_func is not supported when overlapping grad-reduce')
        config.no_sync_func = [model_chunk.no_sync for model_chunk in model]
        if len(model) == 1:
            config.no_sync_func = config.no_sync_func[0]
        if args.align_grad_reduce:
            config.grad_sync_func = [model_chunk.start_grad_sync for model_chunk in model]
            if len(model) == 1:
                config.grad_sync_func = config.grad_sync_func[0]
    if args.overlap_param_gather and args.align_param_gather:
        config.param_sync_func = [model_chunk.start_param_sync for model_chunk in model]
        if len(model) == 1:
            config.param_sync_func = config.param_sync_func[0]
    config.finalize_model_grads_func = finalize_model_grads

    timers('interval-time', log_level=0).start(barrier=True)
    print_datetime('before the start of training step')
    report_memory_flag = True
    pre_hook_enabled = False
    should_exit = False
    exit_code = 0

    if args.manual_gc:
        # Disable the default garbage collector and perform the collection manually.
        # This is to align the timing of garbage collection across ranks.
        assert args.manual_gc_interval >= 0, \
            'Manual garbage collection interval should be larger than or equal to 0'
        gc.disable()
        gc.collect()

    # Singleton initialization of straggler detector.
    if args.log_straggler:
        global stimer
        world = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()
        mmcnt = args.straggler_minmax_count
        stimer.configure(world, rank,
                mmcnt = mmcnt,
                enabled = not args.disable_straggler_on_startup,
                port = args.straggler_ctrlr_port)
    num_floating_point_operations_since_last_log_event = 0.0

    num_microbatches = get_num_microbatches()
    eval_duration = 0.0
    eval_iterations = 0

    def get_e2e_base_metrics():
        """Get base metrics values for one-logger to calculate E2E tracking metrics.
        """
        num_floating_point_operations_since_current_train_start = \
            num_floating_point_operations_so_far - args.num_floating_point_operations_so_far
        return {
            'iteration': iteration,
            'train_duration': timers('interval-time').active_time(),
            'eval_duration': eval_duration,
            'eval_iterations': eval_iterations,
            'total_flops_since_current_train_start': num_floating_point_operations_since_current_train_start,
            'num_floating_point_operations_so_far': num_floating_point_operations_so_far,
            'consumed_train_samples': args.consumed_train_samples,
            'world_size': args.world_size,
            'seq_length': args.seq_length
        }
    # Cache into one-logger for callback.
    if one_logger:
        with one_logger.get_context_manager():
            one_logger.store_set('get_e2e_base_metrics', get_e2e_base_metrics)

    prof = None
    if args.profile and torch.distributed.get_rank() in args.profile_ranks and args.use_pytorch_profiler:
        def trace_handler(p):
            from pathlib import Path
            Path(f"{args.profile_dir}").mkdir(parents=True, exist_ok=True)
            if args.rank in [0]:
                print(p.key_averages(group_by_input_shape=True, 
                                    group_by_stack_n=5).table(sort_by="self_cuda_time_total", 
                                                            row_limit=-1, 
                                                            max_src_column_width=100,
                                                            max_name_column_width=280, 
                                                            max_shapes_column_width=200))
                
            p.export_chrome_trace("{path}/trace_rank{rank}_step{step}.json".format(
                path=args.profile_dir, rank=torch.distributed.get_rank(), step=p.step_num))

        prof = torch.profiler.profile(
            activities=[
            torch.profiler.ProfilerActivity.CPU,
            torch.profiler.ProfilerActivity.CUDA,
            ],
            schedule=torch.profiler.schedule(
                wait=max(args.profile_step_start-1, 0),
                warmup=1 if args.profile_step_start > 0 else 0,
                active=args.profile_step_end-args.profile_step_start,
                repeat=1),
            record_shapes=True, 
            #on_trace_ready=torch.profiler.tensorboard_trace_handler('./torch_prof_data'))
            on_trace_ready=trace_handler)
        prof.start()
silencealiang's avatar
silencealiang committed
1522
1523
1524
    elif args.profile and torch.distributed.get_rank() in args.profile_ranks and args.use_hip_profiler:
        import ctypes
        roctracer = ctypes.cdll.LoadLibrary("/opt/dtk/roctracer/lib/libroctracer64.so")
silencealiang's avatar
silencealiang committed
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

    start_iteration = iteration
    # Disable forward pre-hook to start training to ensure that errors in checkpoint loading
    # or random initialization don't propagate to all ranks in first all-gather (which is a
    # no-op if things work correctly).
    if should_disable_forward_pre_hook(args):
        disable_forward_pre_hook(model, param_sync=False)
        # Also remove param_sync_func temporarily so that sync calls made in
        # `forward_backward_func` are no-ops.
        param_sync_func = config.param_sync_func
        config.param_sync_func = None
        pre_hook_enabled = False
    # Also, check weight hash across DP replicas to be very pedantic.
    if args.check_weight_hash_across_dp_replicas_interval is not None:
        assert check_param_hashes_across_dp_replicas(model, cross_check=True), \
            "Parameter hashes not matching across DP replicas"
        torch.distributed.barrier()
        print_rank_0(f">>> Weight hashes match after {iteration} iterations...")

    # Run training iterations till done.
    while iteration < args.train_iters:
        if args.profile and torch.distributed.get_rank() in args.profile_ranks:
            if args.use_pytorch_profiler:
                prof.step()
silencealiang's avatar
silencealiang committed
1549
1550
1551
            elif args.use_hip_profiler:
                if iteration == args.profile_step_start: roctracer.roctracer_start()
                if iteration == args.profile_step_end: roctracer.roctracer_stop()
silencealiang's avatar
silencealiang committed
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
            elif iteration == args.profile_step_start:
                torch.cuda.cudart().cudaProfilerStart()
                torch.autograd.profiler.emit_nvtx(record_shapes=True).__enter__()

        ft_integration.on_checkpointing_start()
        maybe_finalize_async_save(blocking=False)
        ft_integration.on_checkpointing_end(is_async_finalization=True)

        # Update number of microbatches first without consistency check to decide if a
        # checkpoint should be saved. If the number of microbatches is different
        # from the previous iteration, save a checkpoint. Then run consistency check
        # to make sure training configuration is still valid.
        update_num_microbatches(args.consumed_train_samples, consistency_check=False, verbose=True)
        if get_num_microbatches() != num_microbatches and iteration != 0:
            assert get_num_microbatches() > num_microbatches, \
                (f"Number of microbatches should be increasing due to batch size rampup; "
                 f"instead going from {num_microbatches} to {get_num_microbatches()}")
            if args.save is not None:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         opt_param_scheduler,
                                         num_floating_point_operations_so_far,
                                         checkpointing_context, train_data_iterator=train_data_iterator)
        num_microbatches = get_num_microbatches()
        update_num_microbatches(args.consumed_train_samples, consistency_check=True, verbose=True)

        # Completely skip iteration if needed.
        if iteration in args.iterations_to_skip:
            # Dummy train_step to fast forward train_data_iterator.
            dummy_train_step(train_data_iterator)
            iteration += 1
            batch_size = mpu.get_data_parallel_world_size() * \
                         args.micro_batch_size * \
                         get_num_microbatches()
            args.consumed_train_samples += batch_size
            args.skipped_train_samples += batch_size
            continue

        # Run training step.
        args.curr_iteration = iteration
        ft_integration.on_training_step_start()
        loss_dict, skipped_iter, should_checkpoint, should_exit, exit_code, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       opt_param_scheduler,
                       config)
        ft_integration.on_training_step_end()
        if should_checkpoint:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     opt_param_scheduler,
                                     num_floating_point_operations_so_far,
                                     checkpointing_context, train_data_iterator=train_data_iterator)
        if should_exit:
            break

        # Enable forward pre-hooks after first set of forward and backward passes.
        # When running in fp16, skip all NaN iterations until steady-state loss scaling value
        # is reached.
        if iteration == start_iteration:
            if skipped_iter:
                # Only enable forward pre-hook after a training step has successfully run. Relevant
                # for fp16 codepath where first XX iterations are skipped until steady-state loss
                # scale value is reached.
                start_iteration = iteration + 1
            else:
                # Enable forward pre-hook after training step has successfully run. All subsequent
                # forward passes will use the forward pre-hook / `param_sync_func` in
                # `forward_backward_func`.
                if should_disable_forward_pre_hook(args):
                    enable_forward_pre_hook(model)
                    config.param_sync_func = param_sync_func
                    pre_hook_enabled = True

        iteration += 1
        batch_size = mpu.get_data_parallel_world_size() * \
                     args.micro_batch_size * \
                     get_num_microbatches()
        args.consumed_train_samples += batch_size
        num_skipped_samples_in_batch = (get_current_global_batch_size() -
                                        get_current_running_global_batch_size())
        if args.decrease_batch_size_if_needed:
            assert num_skipped_samples_in_batch >= 0
        else:
            assert num_skipped_samples_in_batch == 0
        args.skipped_train_samples += num_skipped_samples_in_batch
        num_floating_point_operations_in_batch = num_floating_point_operations(args, batch_size)
        num_floating_point_operations_so_far += num_floating_point_operations_in_batch
        num_floating_point_operations_since_last_log_event += num_floating_point_operations_in_batch

        # Logging.
        if not optimizer.is_stub_optimizer:
            loss_scale = optimizer.get_loss_scale().item()
        else:
            loss_scale = 1.0
        params_norm = None

        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
        learning_rate = None
        decoupled_learning_rate = None
        for param_group in optimizer.param_groups:
            if param_group['is_decoupled_lr']:
                decoupled_learning_rate = param_group['lr']
            else:
                learning_rate = param_group['lr']
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          learning_rate,
                                          decoupled_learning_rate,
                                          iteration, loss_scale,
                                          report_memory_flag, skipped_iter,
                                          grad_norm, params_norm, num_zeros_in_grad)

        # Evaluation.
        if args.eval_interval and iteration % args.eval_interval == 0 and \
            args.do_valid:
            timers('interval-time').stop()
            if should_disable_forward_pre_hook(args):
                disable_forward_pre_hook(model)
                pre_hook_enabled = False
            if args.manual_gc and args.manual_gc_eval:
                # Collect all objects.
                gc.collect()
            prefix = f'iteration {iteration}'
            timers('eval-time', log_level=0).start(barrier=True)
            evaluate_and_print_results(prefix, forward_step_func,
                                       valid_data_iterator, model,
                                       iteration, process_non_loss_data_func,
                                       config, verbose=False, write_to_tensorboard=True,
                                       non_loss_data_func=non_loss_data_func)
            eval_duration += timers('eval-time').elapsed()
            eval_iterations += args.eval_iters
            timers('eval-time').stop()
            one_logger_utils.track_e2e_metrics()

            if args.manual_gc and args.manual_gc_eval:
                # Collect only the objects created and used in evaluation.
                gc.collect(generation=0)
            if should_disable_forward_pre_hook(args):
                enable_forward_pre_hook(model)
                pre_hook_enabled = True
            timers('interval-time', log_level=0).start(barrier=True)

        # Miscellaneous post-training-step functions (e.g., FT heartbeats, GC).
        # Some of these only happen at specific iterations.
        post_training_step_callbacks(model, optimizer, opt_param_scheduler, iteration, prof,
                                     num_floating_point_operations_since_last_log_event)

        # Checkpoint and decide whether to exit.
        should_exit = checkpoint_and_decide_exit(model, optimizer, opt_param_scheduler, iteration,
                                                 num_floating_point_operations_so_far,
                                                 checkpointing_context, train_data_iterator)
        if should_exit:
            break

    one_logger_utils.track_e2e_metrics()

    # Flush TensorBoard, WandB writers and one-logger.
    writer = get_tensorboard_writer()
    if writer:
        writer.flush()

    # Close out pre-hooks if using distributed optimizer and overlapped param gather.
    if pre_hook_enabled:
        disable_forward_pre_hook(model)

    ft_integration.on_checkpointing_start()
    # This will finalize all unfinalized async request and terminate
    # a persistent async worker if persistent ckpt worker is enabled
    maybe_finalize_async_save(blocking=True, terminate=True)
    ft_integration.on_checkpointing_end(is_async_finalization=True)
    if args.enable_ft_package and ft_integration.get_rank_monitor_client() is not None:
        ft_integration.get_rank_monitor_client().shutdown_workload_monitoring()

    # If any exit conditions (signal handler, duration, iterations) have been reached, exit.
    if should_exit:
        wandb_writer = get_wandb_writer()
        if wandb_writer:
            wandb_writer.finish()
        ft_integration.shutdown()
        sys.exit(exit_code)

    return iteration, num_floating_point_operations_so_far


def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             config,
             verbose=False,
             non_loss_data_func=None):
    """Evaluation."""
    args = get_args()
    timers = get_timers()

    timers('evaluate', log_level=0).start(barrier=True)

    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        from megatron.legacy.model.vision.knn_monitor import compute_feature_bank
        compute_feature_bank(model)

    # Turn on evaluation mode which disables dropout.
    for model_module in model:
        model_module.eval()

    # Disable result validation during evaluation
    rerun_state_machine = get_rerun_state_machine()
    rerun_mode = rerun_state_machine.get_mode()
    rerun_state_machine.set_mode(RerunMode.DISABLED)

    total_loss_dict = {}

    # make validation batch size independent from training batch size
    eval_batch_size = args.global_batch_size
    eval_num_microbatches = eval_batch_size // \
        (args.micro_batch_size * args.data_parallel_size)

    with torch.no_grad():
        iteration = 0
        if verbose:
            print_rank_0(f'Evaluating on {args.eval_iters * eval_batch_size} samples')
        while iteration < args.eval_iters:
            iteration += 1
            if verbose:
                print_rank_0(f'Evaluating iter {iteration}/{args.eval_iters}')

            forward_backward_func = get_forward_backward_func()
            # Don't care about timing during evaluation
            config.timers = None
            ft_integration.on_eval_step_start()
            loss_dicts = forward_backward_func(
                forward_step_func=forward_step_func,
                data_iterator=data_iterator,
                model=model,
                num_microbatches=eval_num_microbatches,
                seq_length=args.seq_length,
                micro_batch_size=args.micro_batch_size,
                decoder_seq_length=args.decoder_seq_length,
                forward_only=True)
            ft_integration.on_eval_step_end()
            config.timers = get_timers()

            # Empty unused memory
            if args.empty_unused_memory_level >= 1:
                torch.cuda.empty_cache()

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
                    for key in loss_dict:
                        if key not in total_loss_dict:
                            total_loss_dict[key] = torch.tensor([0.0, 0.0], dtype=torch.float).cuda()
                        val = loss_dict[key]
                        if isinstance(val, tuple) or isinstance(val, list):
                            total_loss_dict[key][0] += val[0]
                            total_loss_dict[key][1] += val[1]
                        else:
                            total_loss_dict[key][0] += val
                            total_loss_dict[key][1] += 1

            args.consumed_valid_samples += eval_batch_size

            if args.exit_duration_in_mins:
                train_time = (time.time() - _TRAIN_START_TIME) / 60.0
                done_cuda = torch.tensor(
                    [train_time > args.exit_duration_in_mins],
                    dtype=torch.int, device='cuda')
                torch.distributed.all_reduce(
                    done_cuda, op=torch.distributed.ReduceOp.MAX)
                done = done_cuda.item()
                if done:
                    rerun_state_machine.set_mode(rerun_mode)
                    print_rank_0('Exiting during evaluation, timelimit reached')
                    return None, None, True

        collected_non_loss_data = None
        if non_loss_data_func is not None:
            collected_non_loss_data = non_loss_data_func(model)
        elif process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func=forward_step_func,
                data_iterator=data_iterator,
                model=model,
                num_microbatches=get_num_microbatches(),
                seq_length=args.seq_length,
                micro_batch_size=args.micro_batch_size,
                decoder_seq_length=args.decoder_seq_length,
                forward_only=True,
                collect_non_loss_data=True)

    # Move model back to the train mode.
    for model_module in model:
        model_module.train()

    for key in total_loss_dict:
        numerator, denominator = total_loss_dict[key]
        total_loss_dict[key] = numerator / denominator

    timers('evaluate').stop()
    timers.log(['evaluate'])

    rerun_state_machine.set_mode(rerun_mode)

    rerun_state_machine.set_mode(rerun_mode)

    return total_loss_dict, collected_non_loss_data, False

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
                               iteration, process_non_loss_data_func, config,
                               verbose=False, write_to_tensorboard=True, non_loss_data_func=None):
    """Helper function to evaluate and dump results on screen."""
    args = get_args()
    if write_to_tensorboard:
        writer = get_tensorboard_writer()
    else:
        writer = None

    wandb_writer = get_wandb_writer()

    total_loss_dict, collected_non_loss_data, timelimit = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, config, verbose, non_loss_data_func)
    # Timelimit hit during evaluation
    if timelimit:
        return
    string = f' validation loss at {prefix} | '
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer:
            writer.add_scalar('{} validation'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} validation vs samples'.format(key),
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
            if args.log_validation_ppl_to_tensorboard:
                writer.add_scalar('{} validation ppl'.format(key), ppl,
                                  iteration)
                writer.add_scalar('{} validation ppl vs samples'.format(key),
                                  ppl, args.consumed_train_samples)
            if wandb_writer and is_last_rank():
                wandb_writer.log({
                    '{} validation'.format(key): total_loss_dict[key].item()},
                    iteration)

    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

    length = len(string) + 1
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)


def cyclic_iter(iter):
    while True:
        for x in iter:
            yield x


def get_train_valid_test_num_samples():
    """Train/valid/test num samples."""

    args = get_args()

    # Number of train/valid/test samples.
    if args.train_samples:
        train_samples = args.train_samples
    else:
        train_samples = args.train_iters * args.global_batch_size
    eval_iters = (args.train_iters // args.eval_interval + 1) * \
                 args.eval_iters
    test_iters = args.eval_iters

    return (
        train_samples,
        eval_iters * args.global_batch_size,
        test_iters * args.global_batch_size,
    )


def build_train_valid_test_datasets(build_train_valid_test_datasets_provider):
    """Build pretraining datasets."""
    train_valid_test_num_samples = get_train_valid_test_num_samples()
    print_rank_0(' > datasets target sizes (minimum size):')
    print_rank_0('    train:      {}'.format(train_valid_test_num_samples[0]))
    print_rank_0('    validation: {}'.format(train_valid_test_num_samples[1]))
    print_rank_0('    test:       {}'.format(train_valid_test_num_samples[2]))
    return build_train_valid_test_datasets_provider(train_valid_test_num_samples)


def build_train_valid_test_data_loaders(
        build_train_valid_test_datasets_provider):
    """Build pretraining data loaders."""

    args = get_args()

    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
        assert args.train_samples is None, \
            'Only backward compatiblity support for iteration-based training'
        args.consumed_train_samples = args.iteration * args.global_batch_size
    if args.iteration > 0 and args.consumed_valid_samples == 0:
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size

    # Rely on distributed-aware core datasets, temporary
    is_distributed = getattr(build_train_valid_test_datasets_provider, "is_distributed", False)

    # Construct the data pipeline
    if is_distributed or mpu.get_tensor_model_parallel_rank() == 0:

        # Build datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
            build_train_valid_test_datasets_provider)
        # Build dataloders.
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        if args.skip_train:
            valid_dataloader = build_pretraining_data_loader(valid_ds, 0)
        else:
            valid_dataloader = build_pretraining_data_loader(
                valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        flags = torch.tensor(
            [int(do_train), int(do_valid), int(do_test)],
            dtype=torch.long, device='cuda')
    else:
        flags = torch.tensor([0, 0, 0], dtype=torch.long, device='cuda')

    torch.distributed.broadcast(flags, 0)

    args.do_train = getattr(args, "do_train", False) or flags[0].item()
    args.do_valid = getattr(args, "do_valid", False) or flags[1].item()
    args.do_test = getattr(args, "do_test", False) or flags[2].item()

    return train_dataloader, valid_dataloader, test_dataloader


def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """Build pretraining data iterators."""

    args = get_args()

    # Build loaders.
    train_dataloader, valid_dataloader, test_dataloader = \
        build_train_valid_test_data_loaders(
            build_train_valid_test_datasets_provider)

    # Build iterators.
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic', 'external']

    def _get_iterator(dataloader_type, dataloader):
        """Return dataset iterator."""
        if dataloader_type == "single":
            return RerunDataIterator(iter(dataloader))
        elif dataloader_type == "cyclic":
            return RerunDataIterator(iter(cyclic_iter(dataloader)))
        elif dataloader_type == "external":
            # External dataloader is passed through. User is expected to define how to iterate.
            if isinstance(dataloader, list):
                return [RerunDataIterator(d) for d in dataloader]
            else:
                return RerunDataIterator(dataloader)
        else:
            raise RuntimeError("unexpected dataloader type")

    if train_dataloader is not None:
        train_data_iterator = _get_iterator(dl_type, train_dataloader)
    else:
        train_data_iterator = None

    if valid_dataloader is not None:
        valid_data_iterator = _get_iterator(dl_type, valid_dataloader)
    else:
        valid_data_iterator = None

    if test_dataloader is not None:
        test_data_iterator = _get_iterator(dl_type, test_dataloader)
    else:
        test_data_iterator = None

    return train_data_iterator, valid_data_iterator, test_data_iterator


def should_disable_forward_pre_hook(args):
    """Block forward pre-hook for certain configurations."""
    return not args.use_custom_fsdp and args.use_distributed_optimizer and args.overlap_param_gather