evaluate.py 8.35 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""GPT zero-shot evaluation."""
Mohammad's avatar
Mohammad committed
17
18
19
20
21

import math

import torch

Neel Kant's avatar
Neel Kant committed
22
from megatron import get_args
23
from megatron import print_rank_0, is_last_rank
Mohammad's avatar
Mohammad committed
24
25
26
from megatron import get_tokenizer
from megatron import mpu
from megatron.checkpointing import load_checkpoint
27
from megatron.model import GPTModel, GPTModelFirstStage, GPTModelLastStage, GPTModelIntermediateStage
28
from megatron.training import get_model, communicate
Mohammad's avatar
Mohammad committed
29
30
31
from megatron.utils import get_ltor_masks_and_position_ids
from tasks.finetune_utils import build_data_loader

Raul Puri's avatar
Raul Puri committed
32
from .datasets import build_dataset
Mohammad's avatar
Mohammad committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


def get_model_provider(eval_metric):
    """Based on evaluation metric set the parallel-output flag and
    return the model provider."""

    def model_provider():
        """Build the model."""

        if eval_metric == 'loss':
            parallel_output = True
        elif eval_metric == 'accuracy':
            parallel_output = False
        else:
            raise NotImplementedError('output type for {} evaluation metric '
                                      'is not supported.'.format(eval_metric))

50
        print_rank_0('building GPT model ...')
51
52
53
        if mpu.get_pipeline_model_parallel_world_size() > 1:
            # Determine model based on position of stage in pipeline.
            if mpu.is_pipeline_first_stage():
54
                model = GPTModelFirstStage(num_tokentypes=0)
55
            elif mpu.is_pipeline_last_stage():
56
                model = GPTModelLastStage(
57
58
                    parallel_output=parallel_output, num_tokentypes=0)
            else:
59
                model = GPTModelIntermediateStage(num_tokentypes=0)
60
        else:
61
            model = GPTModel(num_tokentypes=0, parallel_output=parallel_output)
Mohammad's avatar
Mohammad committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

        return model

    return model_provider


def process_batch(batch):
    """Process batch and produce inputs for the model."""
    args = get_args()
    tokenizer = get_tokenizer()

    loss_mask = batch['pad_mask'].long().cuda().contiguous().byte()
    tokens_ = batch['text'].long().cuda().contiguous()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.eod,
        args.reset_position_ids,
        args.reset_attention_mask,
84
        args.eod_mask_loss)
Mohammad's avatar
Mohammad committed
85
86
87
88
89
90
91
92
93
94
95

    return tokens, labels, attention_mask, position_ids, loss_mask


def forward_step(batch, model, eval_metric):
    """Forward step."""

    # Get the batch.
    tokens, labels, attention_mask, position_ids, loss_mask = process_batch(
        batch)

96
97
98
99
    # Tell the model what our actual batch size will be
    args = get_args()
    args.micro_batch_size = len(labels)

Mohammad's avatar
Mohammad committed
100
    # Forward model.
101
102
103
104
105
106
107
108
    if not mpu.is_pipeline_first_stage():
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
    else:
        input_tensor = None
Mohammad's avatar
Mohammad committed
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    # Forward pass through the model.
    if mpu.is_pipeline_first_stage():
        assert input_tensor is None
        if mpu.is_pipeline_last_stage():
            output = model(tokens, position_ids, attention_mask)
        else:
            output = model(tokens, position_ids, attention_mask)
    else:
        assert input_tensor is not None
        output = model(input_tensor, attention_mask)

    if not mpu.is_pipeline_last_stage():
        communicate(tensor_send_next=output,
                    tensor_send_prev=None,
                    recv_forward=False,
                    recv_backward=False)
        return None

    if mpu.is_pipeline_last_stage():
        # For loss, return the unreduced loss.
        if eval_metric == 'loss':
            losses = mpu.vocab_parallel_cross_entropy(
                output.contiguous().float(), labels.contiguous())
            loss = torch.sum(
                losses.view(-1) * loss_mask.contiguous().view(-1).float())
            return loss
Mohammad's avatar
Mohammad committed
136

137
138
139
140
141
142
143
        # For accuracy, return the number of correctly predicted samples.
        if eval_metric == 'accuracy':
            outputs = torch.argmax(output, -1)
            correct = (outputs == labels).float()
            correct[(1 - loss_mask).bool()] = 1
            correct = correct.prod(-1)
            return correct.sum()
Mohammad's avatar
Mohammad committed
144

145
146
147
        raise NotImplementedError('forward method for evaluation metric {} '
                                  'is not implemented.'.format(eval_metric))
    return None
Mohammad's avatar
Mohammad committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166


def evaluate(data_loader, model, eval_metric):
    """Evaluation."""
    args = get_args()

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_output = 0.0
    with torch.no_grad():
        # For all the batches in the dataset.
        for iteration, batch in enumerate(data_loader):
            if iteration % args.log_interval == 0:
                print_rank_0('> working on iteration: {}'.format(iteration))
            # Forward evaluation.
            output = forward_step(batch, model, eval_metric)

            # Reduce across processes.
167
168
169
            if mpu.is_pipeline_last_stage():
                torch.distributed.all_reduce(output,
                                             group=mpu.get_data_parallel_group())
Mohammad's avatar
Mohammad committed
170

171
                total_output += output
Mohammad's avatar
Mohammad committed
172
173
174
175
176
177
178
179
180
181
182

    return total_output


def evaluate_and_print_results(task, data_loader, model, eval_metric):
    """Evaluate and print results on screen."""

    # Evaluate and get results.
    output = evaluate(data_loader, model, eval_metric)

    string = ' validation results on {} | '.format(task)
183
184
185
186
187
188
189
190
191
192
193
194
    if is_last_rank():
        if eval_metric == 'loss':
            num_tokenized_tokens = data_loader.dataset.num_tokenized_tokens
            num_original_tokens = data_loader.dataset.num_original_tokens
            val_loss = output / (num_tokenized_tokens - 1)
            ppl = math.exp(min(20, val_loss))
            token_ratio = (num_tokenized_tokens - 1) / (num_original_tokens - 1)
            adjusted_ppl = math.exp(min(20, val_loss * token_ratio))
            string += 'avg loss: {:.4E} | '.format(val_loss)
            string += 'ppl: {:.4E} | '.format(ppl)
            string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl)
            string += 'token ratio: {} |'.format(token_ratio)
Mohammad's avatar
Mohammad committed
195

196
197
198
199
200
201
202
203
204
205
        elif eval_metric == 'accuracy':
            num_examples = len(data_loader.dataset)
            acc = output / num_examples
            string += 'number correct: {:.4E} | '.format(output)
            string += 'total examples: {:.4E} | '.format(num_examples)
            string += 'avg accuracy: {:.4E}'.format(acc)

        else:
            raise NotImplementedError('evaluation method for {} metric is not '
                                      'implemented yet.'.format(eval_metric))
Mohammad's avatar
Mohammad committed
206

207
208
209
210
        length = len(string) + 1
        print('-' * length)
        print(string)
        print('-' * length)
Mohammad's avatar
Mohammad committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231


def main():
    """Main program."""
    args = get_args()

    if args.task == 'LAMBADA':
        eval_metric = 'accuracy'
    elif args.task == 'WIKITEXT103':
        eval_metric = 'loss'
    else:
        raise NotImplementedError('{} task is not implemented.'.format(
            args.task))

    # Set up model and load checkpoint.
    model = get_model(get_model_provider(eval_metric))
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    # Data stuff.
    dataset = build_dataset(args.task)
232
    dataloader = build_data_loader(dataset, args.micro_batch_size,
Mohammad's avatar
Mohammad committed
233
234
235
236
237
238
                                   args.num_workers, drop_last=False)

    # Run evaluation.
    evaluate_and_print_results(args.task, dataloader, model, eval_metric)

    print_rank_0('done :-)')