pretrain_albert.py 7.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT"""

import torch
import torch.nn.functional as F

from configure_data import configure_data
from megatron import mpu
from megatron.model import BertModel
from megatron.utils import print_rank_0
from megatron.utils import reduce_losses
from megatron.utils import vocab_size_with_padding
from megatron.training import run
from megatron.data import AlbertDataset, split_dataset
from megatron.data_utils.samplers import DistributedBatchSampler

def model_provider(args):
    """Build the model."""

    print_rank_0('building BERT model ...')

    model = BertModel(
        num_layers=args.num_layers,
        vocab_size=args.vocab_size,
        hidden_size=args.hidden_size,
        num_attention_heads=args.num_attention_heads,
        embedding_dropout_prob=args.hidden_dropout,
        attention_dropout_prob=args.attention_dropout,
        output_dropout_prob=args.hidden_dropout,
        max_sequence_length=args.max_position_embeddings,
        checkpoint_activations=args.checkpoint_activations,
        checkpoint_num_layers=args.checkpoint_num_layers,
        add_binary_head=True,
        layernorm_epsilon=args.layernorm_epsilon,
        num_tokentypes=args.tokentype_size,
        parallel_output=True)

    return model


def get_batch(data_iterator, timers):

    # Items and their type.
    keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
    sentence_order = data_b['is_random'].long()
    loss_mask = data_b['loss_mask'].float()
    lm_labels = data_b['labels'].long()
    padding_mask = data_b['padding_mask'].byte()

    return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask


def forward_step(data_iterator, model, args, timers):
    """Forward step."""

    # Get the batch.
    timers('batch generator').start()
    tokens, types, sentence_order, loss_mask, lm_labels, padding_mask \
        = get_batch(data_iterator, timers)
    timers('batch generator').stop()

    # Forward model.
    lm_logits, sop_logits = model(tokens, 1-padding_mask, tokentype_ids=types)

    sop_loss = F.cross_entropy(sop_logits.view(-1, 2).contiguous().float(),
                               sentence_order.view(-1).contiguous(),
                               ignore_index=-1)

    lm_loss_ = mpu.vocab_parallel_cross_entropy(lm_logits.contiguous().float(),
                                                lm_labels.contiguous())
    lm_loss = torch.sum(
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()

    loss = lm_loss + sop_loss

    reduced_losses = reduce_losses([lm_loss, sop_loss])

    return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]}


def get_train_val_test_data(args):
    """Load the data on rank zero and boradcast number of tokens to all GPUS."""

    (train_data, val_data, test_data) = (None, None, None)

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        if args.data_loader == None:
            args.data_loader = 'binary'
        if args.data_loader == 'binary':
            if not args.max_num_samples:
                args.max_num_samples = (args.train_iters + 2 * args.eval_iters) * args.batch_size
            if not args.data_path:
                print("Albert currently only supports a unified dataset specified with --data-path")
                exit(1)
            print("Creating AlbertDataset...")
            full_data = AlbertDataset.from_paths(args.vocab, args.data_path,
                                                 args.data_impl, args.data_epochs,
                                                 args.max_num_samples,
                                                 args.mask_prob, args.seq_length,
                                                 args.short_seq_prob,
                                                 args.seed, args.skip_mmap_warmup)
            print("Finished creating AlbertDataset...")
            split = split_dataset.get_split(args)
            if split_dataset.should_split(split):
                train_ds, val_ds, test_ds = split_dataset.split_ds(full_data, split, args.shuffle)
            else:
                train_ds = full_data
            num_tokens = train_ds.num_tokens()

            world_size = mpu.get_data_parallel_world_size()
            rank = mpu.get_data_parallel_rank()
            global_batch_size = args.batch_size * world_size
            num_workers = args.num_workers

            def make_data_loader_(dataset):
                if not dataset:
                    return None
                # Use a simple sampler with distributed batch sampler.
                sampler = torch.utils.data.SequentialSampler(dataset)
                batch_sampler = DistributedBatchSampler(
                    sampler=sampler,
                    batch_size=global_batch_size,
                    drop_last=True,
                    rank=rank,
                    world_size=world_size)
                # Torch dataloader.
                return torch.utils.data.DataLoader(dataset,
                                                   batch_sampler=batch_sampler,
                                                   num_workers=num_workers,
                                                   pin_memory=True)

            train_data = make_data_loader_(train_ds)
            valid_data = make_data_loader_(val_ds)
            test_data = make_data_loader_(test_ds)

            do_train = train_data is not None and args.train_iters > 0
            do_valid = valid_data is not None and args.eval_iters > 0
            do_test = test_data is not None and args.eval_iters > 0
            # Need to broadcast num_tokens and num_type_tokens.
            token_counts = torch.cuda.LongTensor([num_tokens,
                                                  2, # hard coded num_type_tokens for now
                                                  int(do_train),
                                                  int(do_valid),
                                                  int(do_test)])
        else:
            print("Unsupported data loader for BERT.")
            exit(1)
    else:
        token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0])


    # Broadcast num tokens.
    torch.distributed.broadcast(token_counts,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    num_tokens = token_counts[0].item()
    num_type_tokens = token_counts[1].item()
    args.do_train = token_counts[2].item()
    args.do_valid = token_counts[3].item()
    args.do_test = token_counts[4].item()

    args.vocab_size = num_tokens
    args.tokentype_size = num_type_tokens

    return train_data, val_data, test_data


if __name__ == "__main__":

    run('Pretrain BERT model', get_train_val_test_data,
        model_provider, forward_step)