dataset_utils.py 18.7 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, and NVIDIA.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16


17
18
19
20
# Most of the code here has been copied from:
#   https://github.com/google-research/albert/blob/master/create_pretraining_data.py
# with some modifications.

21
import collections
Neel Kant's avatar
Neel Kant committed
22
23
import itertools

24
import numpy as np
25
26
27
from megatron import print_rank_0
from megatron.data.bert_dataset import DATASET_TYPES, get_indexed_dataset_, get_train_valid_test_split_, BertDataset
from megatron.data.realm_dataset import InverseClozeDataset
28
29


30
31
32
33
34
35
def compile_helper():
    """Compile helper function ar runtime. Make sure this
    is invoked on a single process."""
    import os
    import subprocess
    path = os.path.abspath(os.path.dirname(__file__))
36
37
38
39
40
    ret = subprocess.run(['make', '-C', path])
    if ret.returncode != 0:
        print("Making C++ dataset helpers module failed, exiting.")
        import sys
        sys.exit(1)
41
42


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
43
44
45
def build_training_sample(sample,
                          target_seq_length, max_seq_length,
                          vocab_id_list, vocab_id_to_token_dict,
46
                          cls_id, sep_id, mask_id, pad_id,
47
                          masked_lm_prob, np_rng):
48
49
50
51
    """Biuld training sample.

    Arguments:
        sample: A list of sentences in which each sentence is a list token ids.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
52
53
54
        target_seq_length: Desired sequence length.
        max_seq_length: Maximum length of the sequence. All values are padded to
            this length.
55
56
57
58
59
60
61
        vocab_id_list: List of vocabulary ids. Used to pick a random id.
        vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
        cls_id: Start of example id.
        sep_id: Separator id.
        mask_id: Mask token id.
        pad_id: Padding token id.
        masked_lm_prob: Probability to mask tokens.
62
63
        np_rng: Random number genenrator. Note that this rng state should be
              numpy and not python since python randint is inclusive for
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
64
              the opper bound whereas the numpy one is exclusive.
65
66
67
68
    """

    # We assume that we have at least two sentences in the sample
    assert len(sample) > 1
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
69
    assert target_seq_length <= max_seq_length
70
71

    # Divide sample into two segments (A and B).
72
    tokens_a, tokens_b, is_next_random = get_a_and_b_segments(sample, np_rng)
73

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
    # Truncate to `target_sequence_length`.
75
    max_num_tokens = target_seq_length
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
76
    truncated = truncate_segments(tokens_a, tokens_b, len(tokens_a),
77
                                  len(tokens_b), max_num_tokens, np_rng)
78
79
80
81
82
83
84
85
86

    # Build tokens and toketypes.
    tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b,
                                                      cls_id, sep_id)

    # Masking.
    max_predictions_per_seq = masked_lm_prob * max_num_tokens
    (tokens, masked_positions, masked_labels, _) = create_masked_lm_predictions(
        tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob,
87
        cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng)
88
89

    # Padding.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
90
    tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np \
91
92
93
94
95
96
        = pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                                   masked_labels, pad_id, max_seq_length)

    train_sample = {
        'text': tokens_np,
        'types': tokentypes_np,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
97
        'labels': labels_np,
98
        'is_random': int(is_next_random),
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
99
100
        'loss_mask': loss_mask_np,
        'padding_mask': padding_mask_np,
101
        'truncated': int(truncated)}
102
103
104
    return train_sample


105
def get_a_and_b_segments(sample, np_rng):
106
107
108
109
110
111
112
113
114
115
116
    """Divide sample into a and b segments."""

    # Number of sentences in the sample.
    n_sentences = len(sample)
    # Make sure we always have two sentences.
    assert n_sentences > 1, 'make sure each sample has at least two sentences.'

    # First part:
    # `a_end` is how many sentences go into the `A`.
    a_end = 1
    if n_sentences >= 3:
117
118
        # Note that randin in numpy is exclusive.
        a_end = np_rng.randint(1, n_sentences)
119
120
121
122
123
124
125
126
127
128
129
    tokens_a = []
    for j in range(a_end):
        tokens_a.extend(sample[j])

    # Second part:
    tokens_b = []
    for j in range(a_end, n_sentences):
        tokens_b.extend(sample[j])

    # Random next:
    is_next_random = False
130
    if np_rng.random() < 0.5:
131
132
133
134
135
136
        is_next_random = True
        tokens_a, tokens_b = tokens_b, tokens_a

    return tokens_a, tokens_b, is_next_random


137
def truncate_segments(tokens_a, tokens_b, len_a, len_b, max_num_tokens, np_rng):
138
    """Truncates a pair of sequences to a maximum sequence length."""
139
    #print(len_a, len_b, max_num_tokens)
140
141
    assert len_a > 0
    assert len_b > 0
142
143
144
    if len_a + len_b <= max_num_tokens:
        return False
    while len_a + len_b > max_num_tokens:
145
146
147
148
149
150
        if len_a > len_b:
            len_a -= 1
            tokens = tokens_a
        else:
            len_b -= 1
            tokens = tokens_b
151
        if np_rng.random() < 0.5:
152
153
154
            del tokens[0]
        else:
            tokens.pop()
155
    return True
156

Neel Kant's avatar
Neel Kant committed
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def create_tokens_and_tokentypes(tokens_a, tokens_b, cls_id, sep_id):
    """Merge segments A and B, add [CLS] and [SEP] and build tokentypes."""

    tokens = []
    tokentypes = []
    # [CLS].
    tokens.append(cls_id)
    tokentypes.append(0)
    # Segment A.
    for token in tokens_a:
        tokens.append(token)
        tokentypes.append(0)
    # [SEP].
    tokens.append(sep_id)
    tokentypes.append(0)
    # Segment B.
    for token in tokens_b:
        tokens.append(token)
        tokentypes.append(1)
    # [SEP].
    tokens.append(sep_id)
    tokentypes.append(1)

    return tokens, tokentypes


MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])


def is_start_piece(piece):
189
190
191
192
193
194
    """Check if the current word piece is the starting piece (BERT)."""
    # When a word has been split into
    # WordPieces, the first token does not have any marker and any subsequence
    # tokens are prefixed with ##. So whenever we see the ## token, we
    # append it to the previous set of word indexes.
    return not piece.startswith("##")
195
196
197
198
199
200
201


def create_masked_lm_predictions(tokens,
                                 vocab_id_list, vocab_id_to_token_dict,
                                 masked_lm_prob,
                                 cls_id, sep_id, mask_id,
                                 max_predictions_per_seq,
202
                                 np_rng,
203
204
205
206
                                 max_ngrams=3,
                                 do_whole_word_mask=True,
                                 favor_longer_ngram=False,
                                 do_permutation=False):
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    """Creates the predictions for the masked LM objective.
    Note: Tokens here are vocab ids and not text tokens."""

    cand_indexes = []
    # Note(mingdachen): We create a list for recording if the piece is
    # the starting piece of current token, where 1 means true, so that
    # on-the-fly whole word masking is possible.
    token_boundary = [0] * len(tokens)

    for (i, token) in enumerate(tokens):
        if token == cls_id or token == sep_id:
            token_boundary[i] = 1
            continue
        # Whole Word Masking means that if we mask all of the wordpieces
        # corresponding to an original word.
        #
        # Note that Whole Word Masking does *not* change the training code
        # at all -- we still predict each WordPiece independently, softmaxed
        # over the entire vocabulary.
        if (do_whole_word_mask and len(cand_indexes) >= 1 and
                not is_start_piece(vocab_id_to_token_dict[token])):
            cand_indexes[-1].append(i)
229
        else:
230
231
232
            cand_indexes.append([i])
            if is_start_piece(vocab_id_to_token_dict[token]):
                token_boundary[i] = 1
233

234
    output_tokens = list(tokens)
235

236
237
    masked_lm_positions = []
    masked_lm_labels = []
238

239
240
241
    if masked_lm_prob == 0:
        return (output_tokens, masked_lm_positions,
                masked_lm_labels, token_boundary)
242

243
244
245
246
247
248
249
250
    num_to_predict = min(max_predictions_per_seq,
                         max(1, int(round(len(tokens) * masked_lm_prob))))

    # Note(mingdachen):
    # By default, we set the probilities to favor shorter ngram sequences.
    ngrams = np.arange(1, max_ngrams + 1, dtype=np.int64)
    pvals = 1. / np.arange(1, max_ngrams + 1)
    pvals /= pvals.sum(keepdims=True)
251

252
253
    if favor_longer_ngram:
        pvals = pvals[::-1]
254

255
256
257
258
259
260
    ngram_indexes = []
    for idx in range(len(cand_indexes)):
        ngram_index = []
        for n in ngrams:
            ngram_index.append(cand_indexes[idx:idx + n])
        ngram_indexes.append(ngram_index)
261

262
    np_rng.shuffle(ngram_indexes)
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    masked_lms = []
    covered_indexes = set()
    for cand_index_set in ngram_indexes:
        if len(masked_lms) >= num_to_predict:
            break
        if not cand_index_set:
            continue
        # Note(mingdachen):
        # Skip current piece if they are covered in lm masking or previous ngrams.
        for index_set in cand_index_set[0]:
            for index in index_set:
                if index in covered_indexes:
                    continue

        n = np_rng.choice(ngrams[:len(cand_index_set)],
                          p=pvals[:len(cand_index_set)] /
                          pvals[:len(cand_index_set)].sum(keepdims=True))
281
282
        index_set = sum(cand_index_set[n - 1], [])
        n -= 1
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        # Note(mingdachen):
        # Repeatedly looking for a candidate that does not exceed the
        # maximum number of predictions by trying shorter ngrams.
        while len(masked_lms) + len(index_set) > num_to_predict:
            if n == 0:
                break
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1
        # If adding a whole-word mask would exceed the maximum number of
        # predictions, then just skip this candidate.
        if len(masked_lms) + len(index_set) > num_to_predict:
            continue
        is_any_index_covered = False
        for index in index_set:
            if index in covered_indexes:
                is_any_index_covered = True
                break
        if is_any_index_covered:
            continue
        for index in index_set:
            covered_indexes.add(index)

            masked_token = None
            # 80% of the time, replace with [MASK]
            if np_rng.random() < 0.8:
                masked_token = mask_id
            else:
                # 10% of the time, keep original
                if np_rng.random() < 0.5:
                    masked_token = tokens[index]
                # 10% of the time, replace with random word
                else:
                    masked_token = vocab_id_list[np_rng.randint(0, len(vocab_id_list))]

            output_tokens[index] = masked_token

            masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
    assert len(masked_lms) <= num_to_predict

    np_rng.shuffle(ngram_indexes)

    select_indexes = set()
    if do_permutation:
        for cand_index_set in ngram_indexes:
            if len(select_indexes) >= num_to_predict:
                break
            if not cand_index_set:
                continue
            # Note(mingdachen):
            # Skip current piece if they are covered in lm masking or previous ngrams.
            for index_set in cand_index_set[0]:
                for index in index_set:
                    if index in covered_indexes or index in select_indexes:
                        continue

            n = np.random.choice(ngrams[:len(cand_index_set)],
                                 p=pvals[:len(cand_index_set)] /
                                 pvals[:len(cand_index_set)].sum(keepdims=True))
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1

            while len(select_indexes) + len(index_set) > num_to_predict:
                if n == 0:
                    break
                index_set = sum(cand_index_set[n - 1], [])
                n -= 1
            # If adding a whole-word mask would exceed the maximum number of
            # predictions, then just skip this candidate.
            if len(select_indexes) + len(index_set) > num_to_predict:
                continue
            is_any_index_covered = False
            for index in index_set:
                if index in covered_indexes or index in select_indexes:
                    is_any_index_covered = True
                    break
            if is_any_index_covered:
                continue
            for index in index_set:
                select_indexes.add(index)
        assert len(select_indexes) <= num_to_predict

        select_indexes = sorted(select_indexes)
        permute_indexes = list(select_indexes)
        np_rng.shuffle(permute_indexes)
        orig_token = list(output_tokens)

        for src_i, tgt_i in zip(select_indexes, permute_indexes):
            output_tokens[src_i] = orig_token[tgt_i]
            masked_lms.append(MaskedLmInstance(index=src_i, label=orig_token[src_i]))

    masked_lms = sorted(masked_lms, key=lambda x: x.index)

    for p in masked_lms:
        masked_lm_positions.append(p.index)
        masked_lm_labels.append(p.label)
    return (output_tokens, masked_lm_positions, masked_lm_labels, token_boundary)
379
380
381
382
383
384
385
386
387
388
389
390
391
392


def pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                             masked_labels, pad_id, max_seq_length):
    """Pad sequences and convert them to numpy."""

    # Some checks.
    num_tokens = len(tokens)
    padding_length = max_seq_length - num_tokens
    assert padding_length >= 0
    assert len(tokentypes) == num_tokens
    assert len(masked_positions) == len(masked_labels)

    # Tokens and token types.
393
    filler = [pad_id] * padding_length
394
395
396
397
    tokens_np = np.array(tokens + filler, dtype=np.int64)
    tokentypes_np = np.array(tokentypes + filler, dtype=np.int64)

    # Padding mask.
398
    padding_mask_np = np.array([1] * num_tokens + [0] * padding_length,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
399
                               dtype=np.int64)
400
401
402
403
404
405
406
407
408
409
410

    # Lables and loss mask.
    labels = [-1] * max_seq_length
    loss_mask = [0] * max_seq_length
    for i in range(len(masked_positions)):
        assert masked_positions[i] < num_tokens
        labels[masked_positions[i]] = masked_labels[i]
        loss_mask[masked_positions[i]] = 1
    labels_np = np.array(labels, dtype=np.int64)
    loss_mask_np = np.array(loss_mask, dtype=np.int64)

411
    return tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505


def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
                                    max_seq_length, masked_lm_prob,
                                    short_seq_prob, seed, skip_warmup,
                                    dataset_type='standard_bert'):

    if dataset_type not in DATASET_TYPES:
        raise ValueError("Invalid dataset_type: ", dataset_type)

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    if dataset_type == 'ict':
        title_dataset = get_indexed_dataset_(data_prefix + '-titles',
                                             data_impl,
                                             skip_warmup)

    # Get start and end indices of train/valid/train into doc-idx
    # Note that doc-idx is desinged to be num-docs + 1 so we can
    # easily iterate over it.
    total_num_of_documents = indexed_dataset.doc_idx.shape[0] - 1
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')

    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
        start_index = indexed_dataset.doc_idx[splits[index]]
        end_index = indexed_dataset.doc_idx[splits[index + 1]]
        print_rank_0('     sentence indices in [{}, {}) total of {} '
                     'sentences'.format(start_index, end_index,
                                        end_index - start_index))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        from megatron.data.realm_dataset import RealmDataset
        dataset = None
        if splits[index + 1] > splits[index]:
            # Get the pointer to the original doc-idx so we can set it later.
            doc_idx_ptr = indexed_dataset.get_doc_idx()
            # Slice the doc-idx
            start_index = splits[index]
            # Add +1 so we can index into the dataset to get the upper bound.
            end_index = splits[index + 1] + 1
            # New doc_idx view.
            indexed_dataset.set_doc_idx(doc_idx_ptr[start_index:end_index])
            # Build the dataset accordingly.
            kwargs = dict(
                name=name,
                data_prefix=data_prefix,
                num_epochs=None,
                max_num_samples=train_valid_test_num_samples[index],
                max_seq_length=max_seq_length,
                short_seq_prob=short_seq_prob,
                seed=seed
            )

            if dataset_type == 'ict':
                dataset = InverseClozeDataset(
                    block_dataset=indexed_dataset,
                    title_dataset=title_dataset,
                    **kwargs
                )
            else:
                dataset_cls = BertDataset if dataset_type == 'standard_bert' else RealmDataset
                dataset = dataset_cls(
                    indexed_dataset=indexed_dataset,
                    masked_lm_prob=masked_lm_prob,
                    **kwargs
                )

            # Set the original pointer so dataset remains the main dataset.
            indexed_dataset.set_doc_idx(doc_idx_ptr)
            # Checks.
            assert indexed_dataset.doc_idx[0] == 0
            assert indexed_dataset.doc_idx.shape[0] == \
                (total_num_of_documents + 1)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)