communication_utils.py 1.96 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import torch

from megatron.core import parallel_state


def _is_cuda(tensor):
    """Check if a tensor is not none and is cuda."""
    assert tensor is not None
    assert tensor.is_cuda


def broadcast_from_last_pipeline_stage(size, dtype, tensor=None):
    """Broadcast a tensor from last pipeline stage to all ranks."""

    if parallel_state.is_pipeline_last_stage():
wangxj's avatar
wangxj committed
17
18
19
20
        assert size == list(
            tensor.shape
        ), f"Expected tensor of shape {size} but got {list(tensor.shape)}"
        assert dtype == tensor.dtype, f"Expected tensor of type {dtype} but got {tensor.dtype}"
xingjinliang's avatar
xingjinliang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
        _is_cuda(tensor)
        assert tensor.is_contiguous()
    else:
        tensor = torch.empty(size, dtype=dtype, device=torch.cuda.current_device())
    # Get the group and corresponding source rank.
    src = parallel_state.get_pipeline_model_parallel_last_rank()
    group = parallel_state.get_pipeline_model_parallel_group()
    torch.distributed.broadcast(tensor, src, group)
    return tensor


def recv_from_prev_pipeline_rank_(recv_buffer=None):
    """Receive from previous pipeline stage and update the
    input buffer inplace."""
    recv_prev_op = torch.distributed.P2POp(
        torch.distributed.irecv, recv_buffer, parallel_state.get_pipeline_model_parallel_prev_rank()
    )
    reqs = torch.distributed.batch_isend_irecv([recv_prev_op])
    for req in reqs:
        req.wait()
    # To protect against race condition when using batch_isend_irecv().
    torch.cuda.synchronize()


def send_to_next_pipeline_rank(tensor=None):
    """Send output to the next pipeline stage."""
    send_next_op = torch.distributed.P2POp(
        torch.distributed.isend, tensor, parallel_state.get_pipeline_model_parallel_next_rank()
    )
    reqs = torch.distributed.batch_isend_irecv([send_next_op])
    for req in reqs:
        req.wait()
    # To protect against race condition when using batch_isend_irecv().
    torch.cuda.synchronize()