gpt_model.py 7.24 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""GPT-2 model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
21
from megatron import mpu
22
from .module import MegatronModule
23
24
25
26
27
28
29

from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .utils import init_method_normal
from .utils import scaled_init_method_normal


30
def gpt_attention_mask_func(attention_scores, ltor_mask):
31
    attention_scores.masked_fill_(ltor_mask, -10000.0)
32
33
34
    return attention_scores


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def post_language_model_processing(lm_output, labels, logit_weights,
                                   get_key_value, parallel_output,
                                   forward_method_parallel_output,
                                   fp16_lm_cross_entropy):
    if get_key_value:
        lm_output, presents = lm_output

    # Output.
    if forward_method_parallel_output is not None:
        parallel_output = forward_method_parallel_output
    output = parallel_lm_logits(
        lm_output,
        logit_weights,
        parallel_output)

    if get_key_value:
        output = [output, presents]

    if labels is None:
        return output
    else:
        if fp16_lm_cross_entropy:
            assert output.dtype == torch.half
            loss = mpu.vocab_parallel_cross_entropy(output, labels)
        else:
            loss = mpu.vocab_parallel_cross_entropy(output.float(), labels)
        return loss


64
class GPTModelBase(MegatronModule):
65
66
    """GPT-2 Language model."""

Mohammad's avatar
Mohammad committed
67
    def __init__(self, num_tokentypes=0, parallel_output=True):
68
        super(GPTModelBase, self).__init__()
Mohammad's avatar
Mohammad committed
69
        args = get_args()
70
71

        self.parallel_output = parallel_output
mohammad's avatar
mohammad committed
72
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
73
74

        self.language_model, self._language_model_key = get_language_model(
75
            attention_mask_func=gpt_attention_mask_func,
76
77
            num_tokentypes=num_tokentypes,
            add_pooler=False,
Mohammad's avatar
Mohammad committed
78
79
80
            init_method=init_method_normal(args.init_method_std),
            scaled_init_method=scaled_init_method_normal(args.init_method_std,
                                                         args.num_layers))
81

82
        self.initialize_word_embeddings(init_method_normal)
83

84
    def forward(self, gpt_model_input, attention_mask, labels=None,
85
86
                tokentype_ids=None, layer_past=None, get_key_value=False,
                forward_method_parallel_output=None):
87

88
        kwargs = {'layer_past': layer_past, 'get_key_value': get_key_value}
89
        if mpu.is_pipeline_first_stage():
90
            (input_ids, position_ids) = gpt_model_input
91
92
            args = [input_ids, position_ids, attention_mask]
            kwargs['tokentype_ids'] = tokentype_ids
93
        else:
94
            args = [gpt_model_input, attention_mask]
95
96
        lm_output = self.language_model(*args, **kwargs)

97
        if mpu.is_pipeline_last_stage():
98
99
100
101
102
103
104
105
106
            return post_language_model_processing(
                lm_output, labels,
                self.word_embeddings_weight(),
                get_key_value,
                self.parallel_output,
                forward_method_parallel_output,
                self.fp16_lm_cross_entropy)
        else:
            return lm_output
107
108
109
110
111
112
113
114

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
115
        # Save word_embeddings.
116
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
117
118
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
119
120
121
122
123
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

124
        # Load word_embeddings.
125
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
126
127
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)
128
129
130
        if self._language_model_key in state_dict:
            state_dict = state_dict[self._language_model_key]
        self.language_model.load_state_dict(state_dict, strict=strict)
131
132


133
class GPTModel(GPTModelBase):
134
135

    def __init__(self, num_tokentypes=0, parallel_output=True):
136
        super(GPTModel, self).__init__(
137
138
139
140
141
142
            num_tokentypes=num_tokentypes,
            parallel_output=parallel_output)

    def forward(self, input_ids, position_ids, attention_mask, labels=None,
                tokentype_ids=None, layer_past=None, get_key_value=False,
                forward_method_parallel_output=None):
143
        return super(GPTModel, self).forward(
144
145
146
147
148
149
150
151
152
            (input_ids, position_ids),
            attention_mask,
            labels=labels,
            tokentype_ids=tokentype_ids,
            layer_past=layer_past,
            get_key_value=get_key_value,
            forward_method_parallel_output=forward_method_parallel_output)


153
class GPTModelFirstStage(GPTModelBase):
154
155

    def __init__(self, num_tokentypes=0):
156
        super(GPTModelFirstStage, self).__init__(
157
158
159
160
            num_tokentypes=num_tokentypes)

    def forward(self, input_ids, position_ids, attention_mask,
                tokentype_ids=None, layer_past=None, get_key_value=False):
161
        return super(GPTModelFirstStage, self).forward(
162
163
164
165
166
167
168
            (input_ids, position_ids),
            attention_mask,
            tokentype_ids=tokentype_ids,
            layer_past=layer_past,
            get_key_value=get_key_value)


169
class GPTModelIntermediateStage(GPTModelBase):
170
171

    def __init__(self, num_tokentypes=0):
172
        super(GPTModelIntermediateStage, self).__init__(
173
174
175
176
            num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask,
                layer_past=None, get_key_value=False):
177
        return super(GPTModelIntermediateStage, self).forward(
178
179
180
181
182
183
            hidden_state,
            attention_mask,
            layer_past=layer_past,
            get_key_value=get_key_value)


184
class GPTModelLastStage(GPTModelBase):
185
186

    def __init__(self, num_tokentypes=0, parallel_output=True):
187
        super(GPTModelLastStage, self).__init__(
188
189
190
191
192
193
            num_tokentypes=num_tokentypes,
            parallel_output=parallel_output)

    def forward(self, hidden_state, attention_mask, labels=None,
                layer_past=None, get_key_value=False,
                forward_method_parallel_output=None):
194
        return super(GPTModelLastStage, self).forward(
195
196
197
198
199
200
            hidden_state,
            attention_mask,
            labels=labels,
            layer_past=layer_past,
            get_key_value=get_key_value,
            forward_method_parallel_output=forward_method_parallel_output)