gpt2_model.py 8.48 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""GPT-2 model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
21
from megatron import mpu
22
23
24
25
26
27
28
29
30
from megatron.module import MegatronModule

from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .utils import init_method_normal
from .utils import scaled_init_method_normal


def gpt2_attention_mask_func(attention_scores, ltor_mask):
31
    attention_scores.masked_fill_(ltor_mask, -10000.0)
32
33
34
    return attention_scores


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def post_language_model_processing(lm_output, labels, logit_weights,
                                   get_key_value, parallel_output,
                                   forward_method_parallel_output,
                                   fp16_lm_cross_entropy):
    if get_key_value:
        lm_output, presents = lm_output

    # Output.
    if forward_method_parallel_output is not None:
        parallel_output = forward_method_parallel_output
    output = parallel_lm_logits(
        lm_output,
        logit_weights,
        parallel_output)

    if get_key_value:
        output = [output, presents]

    if labels is None:
        return output
    else:
        if fp16_lm_cross_entropy:
            assert output.dtype == torch.half
            loss = mpu.vocab_parallel_cross_entropy(output, labels)
        else:
            loss = mpu.vocab_parallel_cross_entropy(output.float(), labels)
        return loss


class GPT2ModelBase(MegatronModule):
65
66
    """GPT-2 Language model."""

Mohammad's avatar
Mohammad committed
67
    def __init__(self, num_tokentypes=0, parallel_output=True):
68
        super(GPT2ModelBase, self).__init__()
Mohammad's avatar
Mohammad committed
69
        args = get_args()
70
71

        self.parallel_output = parallel_output
mohammad's avatar
mohammad committed
72
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
73
74

        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
75
            attention_mask_func=gpt2_attention_mask_func,
76
77
            num_tokentypes=num_tokentypes,
            add_pooler=False,
Mohammad's avatar
Mohammad committed
78
79
80
            init_method=init_method_normal(args.init_method_std),
            scaled_init_method=scaled_init_method_normal(args.init_method_std,
                                                         args.num_layers))
81

82
83
        if mpu.is_pipeline_last_stage():
            if not mpu.is_pipeline_first_stage():
84
85
86
87
88
89
90
91
92
93
                self._word_embeddings_for_head_key = 'word_embeddings_for_head'
                # If first and last stages are different, set word_embeddings
                # weights to 0 here, then copy first stage's weights using all_reduce
                # below.
                self.word_embeddings = mpu.VocabParallelEmbedding(
                    args.padded_vocab_size, args.hidden_size,
                    init_method=init_method_normal(args.init_method_std))
                self.word_embeddings.weight.data.fill_(0)

        # Ensure that first and last stages have the same initial embedding weights.
94
        if mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage():
95
96
97
98
            torch.distributed.all_reduce(self.word_embeddings_weight().data,
                                         group=mpu.get_embedding_group())

    def word_embeddings_weight(self):
99
        if mpu.is_pipeline_first_stage():
100
            return self.language_model.embedding.word_embeddings.weight
101
        if mpu.is_pipeline_last_stage():
102
103
104
105
106
            return self.word_embeddings.weight
        raise Exception('word_embeddings_weight() should be '
                        'called for first and last stage only')

    def forward(self, gpt2_model_input, attention_mask, labels=None,
107
108
                tokentype_ids=None, layer_past=None, get_key_value=False,
                forward_method_parallel_output=None):
109

110
        kwargs = {'layer_past': layer_past, 'get_key_value': get_key_value}
111
        if mpu.is_pipeline_first_stage():
112
113
114
            (input_ids, position_ids) = gpt2_model_input
            args = [input_ids, position_ids, attention_mask]
            kwargs['tokentype_ids'] = tokentype_ids
115
        else:
116
117
118
            args = [gpt2_model_input, attention_mask]
        lm_output = self.language_model(*args, **kwargs)

119
        if mpu.is_pipeline_last_stage():
120
121
122
123
124
125
126
127
128
            return post_language_model_processing(
                lm_output, labels,
                self.word_embeddings_weight(),
                get_key_value,
                self.parallel_output,
                forward_method_parallel_output,
                self.fp16_lm_cross_entropy)
        else:
            return lm_output
129
130
131
132
133
134
135
136

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
137
        # Save word_embeddings.
138
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
139
140
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
141
142
143
144
145
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

146
        # Load word_embeddings.
147
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
148
149
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)
150
151
152
        if self._language_model_key in state_dict:
            state_dict = state_dict[self._language_model_key]
        self.language_model.load_state_dict(state_dict, strict=strict)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222


class GPT2Model(GPT2ModelBase):

    def __init__(self, num_tokentypes=0, parallel_output=True):
        super(GPT2Model, self).__init__(
            num_tokentypes=num_tokentypes,
            parallel_output=parallel_output)

    def forward(self, input_ids, position_ids, attention_mask, labels=None,
                tokentype_ids=None, layer_past=None, get_key_value=False,
                forward_method_parallel_output=None):
        return super(GPT2Model, self).forward(
            (input_ids, position_ids),
            attention_mask,
            labels=labels,
            tokentype_ids=tokentype_ids,
            layer_past=layer_past,
            get_key_value=get_key_value,
            forward_method_parallel_output=forward_method_parallel_output)


class GPT2ModelFirstStage(GPT2ModelBase):

    def __init__(self, num_tokentypes=0):
        super(GPT2ModelFirstStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, input_ids, position_ids, attention_mask,
                tokentype_ids=None, layer_past=None, get_key_value=False):
        return super(GPT2ModelFirstStage, self).forward(
            (input_ids, position_ids),
            attention_mask,
            tokentype_ids=tokentype_ids,
            layer_past=layer_past,
            get_key_value=get_key_value)


class GPT2ModelIntermediateStage(GPT2ModelBase):

    def __init__(self, num_tokentypes=0):
        super(GPT2ModelIntermediateStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask,
                layer_past=None, get_key_value=False):
        return super(GPT2ModelIntermediateStage, self).forward(
            hidden_state,
            attention_mask,
            layer_past=layer_past,
            get_key_value=get_key_value)


class GPT2ModelLastStage(GPT2ModelBase):

    def __init__(self, num_tokentypes=0, parallel_output=True):
        super(GPT2ModelLastStage, self).__init__(
            num_tokentypes=num_tokentypes,
            parallel_output=parallel_output)

    def forward(self, hidden_state, attention_mask, labels=None,
                layer_past=None, get_key_value=False,
                forward_method_parallel_output=None):
        return super(GPT2ModelLastStage, self).forward(
            hidden_state,
            attention_mask,
            labels=labels,
            layer_past=layer_past,
            get_key_value=get_key_value,
            forward_method_parallel_output=forward_method_parallel_output)