generation.py 12.5 KB
Newer Older
zhuww's avatar
zhuww committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Generation utilities."""

import torch
import torch.nn.functional as F

from megatron import get_args, get_tokenizer, mpu
from megatron.utils import get_ltor_masks_and_position_ids
from .communication import (
    copy_from_last_to_first_pipeline_stage,
    broadcast_from_last_pipeline_stage,
    broadcast_from_last_to_first_pipeline_stage)
from .forward_step import ForwardStep
from .sampling import sample

def score_and_return_on_first_stage(model, tokens, lengths):
    """Function for just scoring.
    Arguments:
        model: no interleaving is supported.
        tokens: prompt tokens extended to be of size [b, max_prompt_length]
        lengths: original prompt length, size: [b]
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: 
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """

    args = get_args()

    batch_size = tokens.size(0)
    max_prompt_length = lengths.max().item()
    assert max_prompt_length == tokens.size(1)
    max_sequence_length = min(max_prompt_length, args.max_position_embeddings)

    # forward step.
    forward_step = ForwardStep(model, batch_size, max_sequence_length)

    # ===================
    # Pre-allocate memory
    # ===================

    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
    output_log_probs_size = (batch_size, max_sequence_length - 1)
    
    if mpu.is_pipeline_last_stage():
        output_log_probs = torch.empty(output_log_probs_size,
                                       dtype=torch.float32,
                                       device=torch.cuda.current_device())
    
    # =============
    # Run infernece
    # =============
    with torch.no_grad():
        attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens)
        
        # logits will be meanigful only in the last pipeline stage.
        logits = forward_step(tokens, position_ids, attention_mask)

        if mpu.is_pipeline_last_stage():
            # Always the last stage should have an output.
            assert logits is not None
            log_probs = F.log_softmax(logits, dim=2)
            
            # Pick the tokens that we need to get the log
            # probabilities for. Note that next input token is
            # the token which we selected in the current logits,
            # so shift by 1.
            indices = torch.unsqueeze(tokens[:, 1:], 2)
            output_log_probs = torch.gather(log_probs, 2, indices).squeeze(2)
    
    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================
    output_log_probs = broadcast_from_last_to_first_pipeline_stage(
        output_log_probs_size, torch.float32, output_log_probs)
    
    return tokens, lengths, output_log_probs

def generate_tokens_probs_and_return_on_first_stage(
        model, tokens, lengths,
        return_output_log_probs=False,
        top_k=0, top_p=0.0,
        temperature=1.0,
        use_eod_token_for_early_termination=True,
        stop_on_double_eol=False,
        stop_on_eol=False
        ):
    """Main token generation function.
    Arguments:
        model: no interleaving is supported.
        tokens: prompt tokens extended to be of size [b, max-sequence-length]
        lengths: original prompt length, size: [b]
        return_output_log_probs: flag to calculate the log probability of
            the generated tokens. Note that the log probability is the one
            from the original logit.
        top_k, top_p: top-k and top-p sampling parameters.
            Note that top-k = 1 is gready. Also, these paramters are
            exclusive meaning that:
                if top-k > 0 then we expect top-p=0.
                if top-p > 0 then we check for top-k=0.
        temperature: sampling temperature.
        use_eod_token_for_early_termination: if True, do early termination if
            all the sequences have reached this token.
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: Note that is size is adjusted to a lower value than
             max-sequence-length if generation is terminated early.
        tokens: prompt and generated tokens. size: [b, :]
        generated_sequence_lengths: total length (including prompt) of
            the generated sequence. size: [b]
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """

    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    min_prompt_length = lengths.min().item()
    max_sequence_length = tokens.size(1)
    max_sequence_length = min(max_sequence_length, args.max_position_embeddings)
    
    # If the context is too big, this happens
    if min_prompt_length >= max_sequence_length:
        raise ValueError("context length + tokens_to_generate too large")

    # forward step.
    forward_step = ForwardStep(model, batch_size, max_sequence_length)

    # Added termination_id to support the case that we want to terminate the
    # generation once that id is generated.
    if hasattr(args, 'eos_id'):
        termination_id = args.eos_id
    else:
        termination_id = tokenizer.eod

    # ===================
    # Pre-allocate memory
    # ===================

    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
    output_log_probs_size = (batch_size, max_sequence_length - 1)
    # Lengths of generated seuquence including including prompts.
    generated_sequence_lengths = None
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = torch.empty(output_log_probs_size,
                                           dtype=torch.float32,
                                           device=torch.cuda.current_device())
        generated_sequence_lengths = torch.ones(
                batch_size, dtype=torch.int64,
                device=torch.cuda.current_device()) * max_sequence_length
    
    # Whether we have reached a termination id.
    is_generation_done = torch.zeros(batch_size, dtype=torch.uint8,
                                     device=torch.cuda.current_device())

    # =============
    # Run infernece
    # =============

    with torch.no_grad():
        attention_mask, position_ids = _build_attention_mask_and_position_ids(
            tokens)
        prev_context_length = 0
        for context_length in range(min_prompt_length, max_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
            logits = forward_step(tokens2use, positions2use, attention_mask2use)

            if mpu.is_pipeline_last_stage():
                # Always the last stage should have an output.
                assert logits is not None

                # Sample.
                last_token_logits = logits[:, -1, :]
                new_sample = sample(last_token_logits,
                                    top_k=top_k,
                                    top_p=top_p,
                                    temperature=temperature,
                                    vocab_size=tokenizer.vocab_size)
                # If a prompt length is smaller or equal th current context
                # length, it means we have started generating tokens
                started = lengths <= context_length
                # Update the tokens.
                tokens[started, context_length] = new_sample[started]

                # Calculate the log probabilities.
                if return_output_log_probs:
                    log_probs = F.log_softmax(logits, dim=2)
                    if return_output_log_probs:
                        # Pick the tokens that we need to get the log
                        # probabilities for. Note that next input token is
                        # the token which we selected in the current logits,
                        # so shift by 1.
                        indices = torch.unsqueeze(
                            tokens[
                                :,
                                (prev_context_length + 1):(context_length + 1)],
                            2)
                        output_log_probs[:,
                                         prev_context_length:context_length] = \
                            torch.gather(log_probs, 2, indices).squeeze(2)

            # Update the tokens on the first stage so the next input to
            # the network is correct.
            copy_from_last_to_first_pipeline_stage(batch_size, torch.int64,
                                                   tokens[:, context_length])

            # Update the context length for the next token generation.
            prev_context_length = context_length

            # Check if all the sequences have hit the termination_id.
            done = None
            if mpu.is_pipeline_last_stage():
                # TODO(rprenger) These stopping methods are tokenizer dependent
                # instead tokenization should be in the inference loop so stop sequences can be used
                if stop_on_double_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_two_eols = (new_sample == 198).byte() & (tokens[:, context_length-1] == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_two_eols
                elif stop_on_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_eol = (new_sample == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_eol
                else: 
                    done_token = (new_sample == termination_id).byte() & \
                        started.byte()
                
                just_finished = (done_token & ~is_generation_done).bool()
                generated_sequence_lengths[just_finished.view(-1)] = \
                    context_length + 1
                is_generation_done = is_generation_done | done_token
                done = torch.all(is_generation_done)
            done = broadcast_from_last_pipeline_stage(1, torch.uint8,
                                                      tensor=done)
            if use_eod_token_for_early_termination and done:
                break

    # ===================================================
    # Update the length of based on max generated length.
    # ===================================================

    tokens = tokens[:, :(context_length + 1)]
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = output_log_probs[:, :context_length]

    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================

    generated_sequence_lengths = broadcast_from_last_to_first_pipeline_stage(
        batch_size, torch.int64, generated_sequence_lengths)
    if return_output_log_probs:
        output_log_probs_size = (batch_size, context_length)
        output_log_probs = broadcast_from_last_to_first_pipeline_stage(
            output_log_probs_size, torch.float32, output_log_probs)

    return tokens, generated_sequence_lengths, output_log_probs



def _build_attention_mask_and_position_ids(tokens):
    """Build the attention mask and postition ids for the input tokens."""

    # Since we are not interested in loss-mask and reset attention/position
    # is also False, eod_token is not used so it is safe to set it to None.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
        data=tokens,
        eod_token=None,
        reset_position_ids=False,
        reset_attention_mask=False,
        eod_mask_loss=False)

    return attention_mask, position_ids