test_bert_model.py 9.67 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import os
from importlib.metadata import version

import pytest
import torch
from packaging.version import Version as PkgVersion
from pytest_mock import mocker

from megatron.core.models.bert.bert_layer_specs import (
    bert_layer_local_spec,
    bert_layer_with_transformer_engine_spec,
)
from megatron.core.models.bert.bert_model import BertModel
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from megatron.core.transformer.enums import AttnBackend, AttnMaskType
from megatron.core.transformer.transformer_config import TransformerConfig
from tests.unit_tests.test_utilities import Utils


class TestBertModel:

    def setup_method(self, method):
        tp = 1
        pp = 1
        Utils.initialize_model_parallel(tp, pp)
        model_parallel_cuda_manual_seed(123)
        transformer_config = TransformerConfig(
            num_layers=2,
            hidden_size=12,
            num_attention_heads=4,
            use_cpu_initialization=True,
            perform_initialization=True,
            tensor_model_parallel_size=tp,
            pipeline_model_parallel_size=pp,
            pipeline_dtype=torch.bfloat16,
            attention_backend=AttnBackend.unfused,
        )
        self.bert_model = BertModel(
            config=transformer_config,
            num_tokentypes=0,
            transformer_layer_spec=bert_layer_with_transformer_engine_spec,
            vocab_size=100,
            max_sequence_length=4,
        )

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    @pytest.mark.internal
    def test_constructor(self):
        assert isinstance(self.bert_model, BertModel)

        assert self.bert_model.max_sequence_length == 4

        num_weights = sum([p.numel() for p in self.bert_model.parameters()])
        assert num_weights == 6702

    @pytest.mark.internal
    def test_set_input_tensor(self):
        config: TransformerConfig = self.bert_model.config
        sequence_length = self.bert_model.max_sequence_length
        micro_batch_size = 2

        # [sequence length, batch size, hidden size]
        input_tensor = torch.ones((sequence_length, micro_batch_size, config.hidden_size))

        self.bert_model.set_input_tensor(input_tensor)

        assert self.bert_model.encoder.input_tensor.shape[0] == sequence_length
        assert self.bert_model.encoder.input_tensor.shape[1] == micro_batch_size
        assert self.bert_model.encoder.input_tensor.shape[2] == config.hidden_size

    @pytest.mark.internal
    def test_post_process_forward(self):
        config: TransformerConfig = self.bert_model.config
        sequence_length = self.bert_model.max_sequence_length
        micro_batch_size = 2

        self.bert_model.cuda()

        data = list(range(sequence_length))
        input_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        position_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        attention_mask = torch.ones((micro_batch_size, sequence_length), dtype=bool).cuda()

        logits = self.bert_model.forward(input_ids=input_ids, attention_mask=attention_mask)

        assert logits[0].shape[0] == micro_batch_size
        assert logits[0].shape[1] == sequence_length
        assert logits[0].shape[2] == self.bert_model.vocab_size


class TestBertModelAttentionDimensions:

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    def setup_method(self, method):
        Utils.initialize_model_parallel(1, 1)
        model_parallel_cuda_manual_seed(123)
        self.transformer_config = TransformerConfig(
            num_layers=2,
            hidden_size=12,
            num_attention_heads=4,
            use_cpu_initialization=True,
            pipeline_dtype=torch.bfloat16,
            attention_backend=AttnBackend.auto,
        )
        # This should convert arbitray mask to padding mask
        self.bert_model = BertModel(
            config=self.transformer_config,
            num_tokentypes=0,
            transformer_layer_spec=bert_layer_with_transformer_engine_spec,
            vocab_size=100,
            max_sequence_length=4,
        )

    @pytest.mark.internal
    def test_local_spec(self, mocker):
        self.bert_model.config.attention_backend = AttnBackend.local
        self.bert_model.transformer_layer_spec = bert_layer_local_spec
        attn_mask_dimensions = self.bert_model._sanity_check_attention_and_get_attn_mask_dimension()
        assert (
            attn_mask_dimensions == "b1ss"
        ), f"Expected b1ss for attn_mask_dimensions but got {attn_mask_dimensions}"

    @pytest.mark.internal
    def test_local_spec_exception(self, mocker):
        self.bert_model.config.attention_backend = AttnBackend.flash
        self.bert_model.transformer_layer_spec = bert_layer_local_spec
        with pytest.raises(Exception) as exc_info:
            self.bert_model._sanity_check_attention_and_get_attn_mask_dimension()
        assert (
            str(exc_info.value)
            == 'Expected AttnBackend to be local or auto while using mcore self attention, but found AttnBackend.flash. Set --attn-backend to local or dont use MCore SelfAttention submodule in layer specs'
        )

    @pytest.mark.internal
    def test_transformer_engine_version_1_10(self, mocker):
        bert_layer_with_transformer_engine_spec.submodules.self_attention.params[
            'attn_mask_type'
        ] == AttnMaskType.arbitrary

        mocker.patch("megatron.core.utils.get_te_version", return_value=PkgVersion("1.10"))
        self.bert_model.transformer_layer_spec = bert_layer_with_transformer_engine_spec
        attn_mask_dimensions = self.bert_model._sanity_check_attention_and_get_attn_mask_dimension()
        attn_mask_type = self.bert_model.transformer_layer_spec.submodules.self_attention.params[
            'attn_mask_type'
        ]
        assert (
            attn_mask_type == AttnMaskType.padding
        ), f"Exepcted attn mask type to be padding, but got {attn_mask_type}"
        assert (
            attn_mask_dimensions == "b11s"
        ), f"Expected b11s for attn_mask_dimensions but got {attn_mask_dimensions}"

    @pytest.mark.internal
    def test_transformer_engine_version_1_7_to_1_10_flash_attn(self, mocker):
        self.bert_model.config.attention_backend = AttnBackend.flash
        mocker.patch("megatron.core.utils.get_te_version", return_value=PkgVersion("1.8"))
        self.bert_model.transformer_layer_spec = bert_layer_with_transformer_engine_spec
        attn_mask_dimensions = self.bert_model._sanity_check_attention_and_get_attn_mask_dimension()
        assert (
            attn_mask_dimensions == "b11s"
        ), f"Expected b11s for attn_mask_dimensions but got {attn_mask_dimensions}"

    @pytest.mark.internal
    @pytest.mark.flaky_in_dev
    def test_transformer_engine_version_1_7_to_1_10_rng_error(self, mocker):
        bert_layer_with_transformer_engine_spec.submodules.self_attention.params[
            'attn_mask_type'
        ] == AttnMaskType.padding
        mocker.patch("megatron.core.utils.get_te_version", return_value=PkgVersion("1.8"))
        with pytest.raises(Exception) as exc_info:
            self.bert_model = BertModel(
                config=self.transformer_config,
                num_tokentypes=0,
                transformer_layer_spec=bert_layer_with_transformer_engine_spec,
                vocab_size=100,
                max_sequence_length=4,
            )
        assert str(exc_info.value) == (
            "Linear.__init__() got an unexpected keyword argument 'rng_tracker_name' when "
            "instantiating TERowParallelLinear when instantiating SelfAttention when "
            "instantiating TransformerLayer"
        )

    @pytest.mark.internal
    def test_transformer_engine_version_1_7_to_1_10_unfused_attention(self, mocker):
        self.bert_model.config.attention_backend = AttnBackend.unfused
        bert_layer_with_transformer_engine_spec.submodules.self_attention.params[
            'attn_mask_type'
        ] == AttnMaskType.padding
        mocker.patch("megatron.core.utils.get_te_version", return_value=PkgVersion("1.8"))
        self.bert_model.transformer_layer_spec = bert_layer_with_transformer_engine_spec
        attn_mask_dimensions = self.bert_model._sanity_check_attention_and_get_attn_mask_dimension()
        attn_mask_type = self.bert_model.transformer_layer_spec.submodules.self_attention.params[
            'attn_mask_type'
        ]
        assert (
            attn_mask_type == AttnMaskType.arbitrary
        ), f"Exepcted attn mask type to be arbitrary, but got {attn_mask_type}"
        assert (
            attn_mask_dimensions == "b1ss"
        ), f"Expected b1ss for attn_mask_dimensions but got {attn_mask_dimensions}"

    @pytest.mark.internal
    def test_transformer_engine_version_less_than_1_7(self, mocker):
        os.environ.pop('NVTE_FUSED_ATTN', None)
        os.environ.pop('NVTE_FLASH_ATTN', None)
        os.environ.pop('NVTE_UNFUSED_ATTN', None)
        self.bert_model.config.attention_backend = AttnBackend.flash
        with pytest.raises(Exception) as exc_info:
            mocker.patch("megatron.core.utils.get_te_version", return_value=PkgVersion("1.5"))
            self.bert_model = BertModel(
                config=self.transformer_config,
                num_tokentypes=0,
                transformer_layer_spec=bert_layer_with_transformer_engine_spec,
                vocab_size=100,
                max_sequence_length=4,
            )

        assert str(exc_info.value) == (
            "Flash and fused attention is not supported with transformer engine version "
            "< 1.7. Set --attention-backend to unfused or leave it to be default (auto) or upgrade transformer engine >= 1.7"
        )