config.py 7.69 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
from dataclasses import dataclass

import torch

from megatron.training.activations import fast_gelu, quick_gelu, squared_relu


def get_language_model_config(config):
silencealiang's avatar
add  
silencealiang committed
10
11
    if config.language_model_type == "llama3_8b":
        config.activation_func = torch.nn.functional.silu
xingjinliang's avatar
xingjinliang committed
12
13
14
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
silencealiang's avatar
add  
silencealiang committed
15
16
17
18
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
xingjinliang's avatar
xingjinliang committed
19
20
21
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
silencealiang's avatar
add  
silencealiang committed
22
23
        config.ffn_hidden_size = 14336
    elif config.language_model_type == "mistral_7b":
xingjinliang's avatar
xingjinliang committed
24
25
26
27
28
29
30
31
32
33
34
35
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 14336
silencealiang's avatar
add  
silencealiang committed
36
    elif config.language_model_type == "yi-34b":
xingjinliang's avatar
xingjinliang committed
37
38
39
40
41
42
43
44
45
46
47
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
silencealiang's avatar
add  
silencealiang committed
48
49
        config.ffn_hidden_size = 20480
    elif config.language_model_type == "qwen2.5_7B":
xingjinliang's avatar
xingjinliang committed
50
51
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
silencealiang's avatar
add  
silencealiang committed
52
        config.add_qkv_bias = True
xingjinliang's avatar
xingjinliang committed
53
54
55
56
57
58
59
60
61
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
silencealiang's avatar
add  
silencealiang committed
62
        config.ffn_hidden_size = 18944
xingjinliang's avatar
xingjinliang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    elif config.language_model_type == "qwen2.0_72B":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.add_qkv_bias = True
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 29568
    else:
        raise ValueError(f"unknown language model type {config.language_model_type}")

    return config


def get_vision_model_config(config, apply_query_key_layer_scaling):
    if config.vision_model_type == "clip":
        config.num_layers = 24
        config.num_attention_heads = 16
        config.add_bias_linear = True
        config.add_qkv_bias = True
        config.hidden_size = 1024
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 4096
        config.gated_linear_unit = False
        config.activation_func = quick_gelu
        config.kv_channels = 64
        config.num_query_groups = 16
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'LayerNorm'
        config.apply_rope_fusion = False
    elif config.vision_model_type == "siglip":
        config.num_layers = 27
        config.num_attention_heads = 16
        config.add_bias_linear = True
        config.add_qkv_bias = True
        config.hidden_size = 1152
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 4304
        config.gated_linear_unit = False
        config.activation_func = fast_gelu
        config.kv_channels = 72
        config.num_query_groups = 16
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'LayerNorm'
        config.apply_rope_fusion = False
        config.qk_layernorm = False
        config.layernorm_epsilon = 1e-6
    elif config.vision_model_type == "internvit":
        config.num_layers = 45
        config.num_attention_heads = 32     # Padded for TP=8.
        config.num_query_groups = 32    # Padded for TP=8.
        config.kv_channels = 128
        config.add_bias_linear = True
        config.add_qkv_bias = False
        config.hidden_size = 3200
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 12800
        config.gated_linear_unit = False
        config.activation_func = torch.nn.functional.gelu
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'RMSNorm'
        config.layernorm_epsilon = 1e-6
        config.apply_rope_fusion = False
    else:
        raise ValueError(f"unknown vision model type {config.vision_model_type}")

    return config


def get_vision_projection_config(config, hidden_size):
    config.gated_linear_unit = False
    config.bias_activation_fusion = False
    config.add_bias_linear = False
    config.hidden_size = hidden_size  # Used as the vision projection output size, i.e., the input to the language model.
silencealiang's avatar
add  
silencealiang committed
158
    if config.language_model_type == "llama3_8b":
xingjinliang's avatar
xingjinliang committed
159
160
161
162
163
164
165
166
167
168
        config.ffn_hidden_size = 14336
        config.activation_func = torch.nn.functional.gelu
    elif config.language_model_type == "mistral_7b":
        config.ffn_hidden_size = 14336
        config.activation_func = torch.nn.functional.gelu
        config.normalization = None
    elif config.language_model_type == "yi-34b":
        config.ffn_hidden_size = 20480
        config.normalization = "LayerNorm"
        config.activation_func = torch.nn.functional.gelu
silencealiang's avatar
add  
silencealiang committed
169
170
171
    elif config.language_model_type == "qwen2.5_7B":
        config.ffn_hidden_size = 3584
        config.activation_func = torch.nn.functional.gelu
xingjinliang's avatar
xingjinliang committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    elif config.language_model_type == "qwen2.0_72B":
        config.ffn_hidden_size = 29568
        config.normalization = "LayerNorm"
        config.activation_func = torch.nn.functional.gelu
    else:
        raise ValueError(f"unknown language model type {config.language_model_type}")

    return config


@dataclass
class EvaluationConfig:
    """Evaluation related configuration."""
    task: str

    temperature: float = 1.0
    top_p: float = 0.0
    top_k: int = 0

    out_seq_length: int = 32

    output_path: str = ""

    input_image_path: str = ""
    gt_path: str = ""

    num_partitions: int = 1
    partition_id: int = 0
    num_samples_per_partition: int = 0