pretrain_gpt_modelopt.py 4.36 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.

"""Pretrain GPT."""
import os
import sys
from functools import partial

# This file isn't located in project root, but to import, it should pretend to be.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")))

from megatron.core import mpu
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDataset, GPTDatasetConfig, MockGPTDataset
from megatron.core.datasets.utils import get_blend_from_list
from megatron.core.enums import ModelType
from megatron.core.models.gpt import GPTModel
from megatron.core.utils import StragglerDetector
from megatron.inference.arguments import add_modelopt_args
from megatron.inference.gpt import loss_func, model_provider
from megatron.training import get_args, get_timers, get_tokenizer, pretrain
from megatron.training.utils import (
    get_batch_on_this_cp_rank,
    get_batch_on_this_tp_rank,
    print_rank_0,
)

stimer = StragglerDetector()


def get_batch(data_iterator):
    """Generate a batch."""

    # TODO: this is pretty hacky, find a better way
    if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
        return None, None, None, None, None

    # get batches based on the TP rank you are on
    batch = get_batch_on_this_tp_rank(data_iterator)

    # slice batch along sequence dimension for context parallelism
    batch = get_batch_on_this_cp_rank(batch)

    return batch.values()


def forward_step(data_iterator, model: GPTModel):
    """Forward training step.

    Args:
        data_iterator : Input data iterator
        model (GPTModel): The GPT Model
    """
    timers = get_timers()

    # Get the batch.
    timers('batch-generator', log_level=2).start()
    global stimer
    with stimer(bdata=True):
        tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator)
    timers('batch-generator').stop()

    with stimer:
        output_tensor = model(tokens, position_ids, attention_mask, labels=labels)

    # [ModelOpt]: model is needed to access ModelOpt distillation losses
    return output_tensor, partial(loss_func, loss_mask, model)


def is_dataset_built_on_rank():
    return (
        mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()
    ) and mpu.get_tensor_model_parallel_rank() == 0


def core_gpt_dataset_config_from_args(args):
    tokenizer = get_tokenizer()

    return GPTDatasetConfig(
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend=get_blend_from_list(args.data_path),
        blend_per_split=[
            get_blend_from_list(args.train_data_path),
            get_blend_from_list(args.valid_data_path),
            get_blend_from_list(args.test_data_path),
        ],
        split=args.split,
        num_dataset_builder_threads=args.num_dataset_builder_threads,
        path_to_cache=args.data_cache_path,
        mmap_bin_files=args.mmap_bin_files,
        tokenizer=tokenizer,
        reset_position_ids=args.reset_position_ids,
        reset_attention_mask=args.reset_attention_mask,
        eod_mask_loss=args.eod_mask_loss,
        create_attention_mask=args.create_attention_mask_in_dataloader,
    )


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build the train test and validation datasets.

    Args:
        train_val_test_num_samples : A list containing the number of samples in train test and validation.
    """
    args = get_args()

    config = core_gpt_dataset_config_from_args(args)

    if args.mock_data:
        dataset_type = MockGPTDataset
    else:
        dataset_type = GPTDataset

    print_rank_0("> building train, validation, and test datasets for GPT ...")

    train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
        dataset_type, train_val_test_num_samples, is_dataset_built_on_rank, config
    ).build()

    print_rank_0("> finished creating GPT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":
    # Temporary for transition to core datasets
    train_valid_test_datasets_provider.is_distributed = True

    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
        ModelType.encoder_or_decoder,
        forward_step,
        args_defaults={"tokenizer_type": "GPT2BPETokenizer"},
        extra_args_provider=add_modelopt_args,
    )