tokenization.py 5.14 KB
Newer Older
mshoeybi's avatar
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

mshoeybi's avatar
working  
mshoeybi committed
16
"""Tokenization utilities."""
mshoeybi's avatar
mshoeybi committed
17
18
19
20
21
22


import torch


from megatron import get_tokenizer
mshoeybi's avatar
working  
mshoeybi committed
23
from .communication import broadcast_int_list, broadcast_tensor
mshoeybi's avatar
mshoeybi committed
24
25


mshoeybi's avatar
working  
mshoeybi committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def detokenize_generations(tokens_gpu_tensor,
                           lengths_gpu_tensor,
                           return_segments):
    """Detokenize the generated tokens."""

    tokenizer = get_tokenizer()

    prompts_plus_generations = []
    if return_segments:
        prompts_plus_generations_segments = []

    tokens = tokens_gpu_tensor.cpu().numpy().tolist()
    lengths = lengths_gpu_tensor.cpu().numpy().tolist()
    for sequence_tokens, length in zip(tokens, lengths):
        sequence_tokens = sequence_tokens[:length]
        prompts_plus_generations.append(
            tokenizer.detokenize(sequence_tokens))
        if return_segments:
            words = []
            for token in sequence_tokens:
                word = tokenizer.tokenizer.decoder[token]
                word = bytearray(
                    [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
                        'utf-8', errors='replace')
                words.append(word)
            prompts_plus_generations_segments.append(words)

    if return_segments:
        return tokens, prompts_plus_generations, \
            prompts_plus_generations_segments

    return tokens, prompts_plus_generations

mshoeybi's avatar
working  
mshoeybi committed
59

mshoeybi's avatar
mshoeybi committed
60
61
def tokenize_prompts(prompts=None, tokens_to_generate=None,
                     add_BOS=None, rank=0):
mshoeybi's avatar
working  
mshoeybi committed
62
63
64
65
66
67
68
69
70
71
72
73
74
    """Tokenize prompts and make them avaiable on all ranks."""

    # On all ranks set to None so we can pass them to functions
    sizes_list = None
    prompts_tokens_cuda_long_tensor = None
    prompts_length_cuda_long_tensor = None

    # On the specified rank, build the above.
    if torch.distributed.get_rank() == rank:
        assert prompts is not None
        assert tokens_to_generate is not None
        # Tensor of tokens padded and their unpadded length.
        prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor = \
mshoeybi's avatar
mshoeybi committed
75
            _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS)
mshoeybi's avatar
working  
mshoeybi committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        # We need the sizes of these tensors for the boradcast
        sizes_list = [prompts_tokens_cuda_long_tensor.size(0), # Batch size
                      prompts_tokens_cuda_long_tensor.size(1)] # Sequence lenght

    # First, broadcast the sizes.
    sizes_tensor = broadcast_int_list(2, int_list=sizes_list, rank=rank)

    # Now that we have the sizes, we can boradcast the tokens
    # and length tensors.
    sizes = sizes_tensor.tolist()
    prompts_tokens_cuda_long_tensor = broadcast_tensor(
        sizes, torch.int64, tensor=prompts_tokens_cuda_long_tensor, rank=rank)
    prompts_length_cuda_long_tensor = broadcast_tensor(
        sizes[0], torch.int64, tensor=prompts_length_cuda_long_tensor,
        rank=rank)

    return prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor


mshoeybi's avatar
mshoeybi committed
95
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS):
mshoeybi's avatar
mshoeybi committed
96
97
98
99
100
101
102
103
104
105
    """Given a set of prompts and number of tokens to generate:
        - tokenize prompts
        - set the sequence length to be the max of length of prompts
          plus the number of tokens we would like to generate
        - pad all the sequences to this length so we can convert them
          into a 2D tensor.
    """

    # Tokenize all the prompts.
    tokenizer = get_tokenizer()
mshoeybi's avatar
mshoeybi committed
106
107
108
109
110
    if add_BOS:
        prompts_tokens = [[tokenizer.eod] + tokenizer.tokenize(prompt)
                          for prompt in prompts]
    else:
        prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
mshoeybi's avatar
mshoeybi committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    # Now we have a list of list of tokens which each list has a different
    # size. We want to extend this list to:
    #   - incorporate the tokens that need to be generated
    #   - make all the sequences equal length.
    # Get the prompts length.
    prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
    # Get the max prompts length.
    max_prompt_len = max(prompts_length)
    # Number of tokens in the each sample of the batch.
    samples_length = max_prompt_len + tokens_to_generate
    # Now update the list of list to be of the same size: samples_length.
    for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
        padding_size = samples_length - prompt_length
        prompt_tokens.extend([tokenizer.eod] * padding_size)

    # Now we are in a structured format, we can convert to tensors.
    prompts_tokens_tensor = torch.cuda.LongTensor(prompts_tokens)
    prompts_length_tensor = torch.cuda.LongTensor(prompts_length)

    return prompts_tokens_tensor, prompts_length_tensor