schedules.py 18.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
19
20

from megatron import get_args
21
from megatron import get_num_microbatches
22
23
from megatron import get_timers
from megatron import mpu
24
from megatron import p2p_communication
25
26
27


def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
28
29
30
31
32
33
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    timers = get_timers()

    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

    return output_tensor


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
48
49
50
51
52
53
54
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

    # Backward pass.
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    timers('backward-compute').stop()

    return input_tensor_grad


79
80
81
82
83
84
85
86
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


87
88
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
89
90
91
92
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
93
94
95
    assert len(model) == 1
    model = model[0]

96
97
98
99
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

100
    losses_reduced = []
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
116
117
118
119
120
121

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
122
123
124
125
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
126
127
128
129
130
131
132
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
133
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
134
135
136
137
138
139
140
141

    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
142
143
144
145
146
147
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
148
149
150
151
152
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
153
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
154
155
156
157
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
158
159
160
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

161
    def get_model_chunk_id(microbatch_id, forward):
162
        """Helper method to get the model chunk ID given the iteration number."""
163
164
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
165
        if not forward:
166
167
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
168

169
    def forward_step_helper(microbatch_id):
170
171
172
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
173
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
174
175
176
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_first_stage():
177
178
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
179
180
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
181
182
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
183
184
185
186
187
188
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

        return output_tensor

189
    def backward_step_helper(microbatch_id):
190
191
192
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
193
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
194
195
196
197
198
199
200
201
202
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
203
204
205
206
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
207
208
209
210
211

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
212
213
    input_tensors[0].append(
        p2p_communication.recv_forward(timers, use_ring_exchange=True))
214
215
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
216
217

        # Determine if tensor should be received from previous stage.
218
219
220
221
222
223
224
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
225
226

        # Don't send tensor downstream if on last stage.
227
228
        if mpu.is_pipeline_last_stage():
            output_tensor = None
229
230
231

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
232
233
234
235
236
237
238
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
239
                p2p_communication.send_forward_backward_recv_forward_backward(
240
241
242
243
244
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
245
            input_tensor = \
246
247
                p2p_communication.send_forward_recv_forward(
                    output_tensor, recv_prev, timers)
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        input_tensors[next_forward_model_chunk_id].append(input_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
286
287
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
288
289
290
291
292
293
294
295
296
297

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
298
299
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
300

301
302
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
303
304
305
306
307
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
308
            p2p_communication.send_forward_backward_recv_forward_backward(
309
310
311
312
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
                    timers=timers)

313
314
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
315
316
317
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
318
319
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
320

321
    # Run cooldown backward passes (flush out pipeline).
322
323
324
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
325
                p2p_communication.recv_backward(timers, use_ring_exchange=True))
326
327
328
329
330
331
332
333
334
335
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
336
337
                p2p_communication.send_backward_recv_backward(
                    input_tensor_grad, recv_next, timers))
338
339
340
341

    return losses_reduced


342
343
344
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
345
346
347
348
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
349
350
    timers = get_timers()

351
352
353
354
355
356
357
358
359
360
361
362
363
364
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

365
366
367
368
369
    # Measure pipeline stall only if there are enough microbatches
    # to have every worker in a warmup and steady state phase.
    measure_pipeline_stall = get_num_microbatches() >= \
        mpu.get_pipeline_model_parallel_world_size()

370
371
372
373
374
375
    input_tensors = []
    output_tensors = []
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
376
        input_tensor = p2p_communication.recv_forward(timers)
377
378
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
379
        # Barrier before first receive to measure forward stall.
380
        if i == (num_warmup_microbatches - 1) and measure_pipeline_stall:
381
382
383
            timers('forward-pipeline-stall').start()
            torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
            timers('forward-pipeline-stall').stop()
384
        p2p_communication.send_forward(output_tensor, timers)
385
386
387
388

        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

389
    # Barrier before first receive to measure forward stall.
390
    if num_warmup_microbatches == 0 and measure_pipeline_stall:
391
392
393
394
        timers('forward-pipeline-stall').start()
        torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
        timers('forward-pipeline-stall').stop()

395
396
397
398
    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
399
        input_tensor = p2p_communication.recv_forward(timers)
400
401
402
403
404
405
406
407

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
408
            p2p_communication.send_forward(output_tensor, timers)
409
        else:
410
            output_tensor_grad = \
411
412
                p2p_communication.send_forward_recv_backward(output_tensor,
                                                             timers)
413
414
415
416
417
418
419
420

        # Add input_tensor and output_tensor to end of list, then pop from the
        # start of the list for backward pass.
        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

        if forward_only:
            if not last_iteration:
421
                input_tensor = p2p_communication.recv_forward(timers)
422
423
424
425
426
427
428
429
430
        else:
            input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
431
                p2p_communication.send_backward(input_tensor_grad, timers)
432
            else:
433
                input_tensor = \
434
435
                    p2p_communication.send_backward_recv_forward(
                        input_tensor_grad, timers)
436
437
438
439
440
441
442

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

443
            output_tensor_grad = p2p_communication.recv_backward(timers)
444
445
446
447
448

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

449
            p2p_communication.send_backward(input_tensor_grad, timers)
450
451

    return losses_reduced